Answer:
0.07°C
Explanation:
<u>solution:</u>
the speed of a sound in water is<u>:</u>
v(T)=1480+4(T-4°C)
<u>at 4°C the travel time is:</u>
t(4◦C) = (
7600 × 103 m
)
/ (1480 m/s) = 5202.7 s
<u>5°C, the travel time is:</u>
t(5◦C) = (
7600 × 103 m
)
/ (1484 m/s) = 5188.7 s
<u>one degree C corresponds to a ∆t of 14 s so temperature difference is:</u>
ΔT=1 s/14 s=0.07◦C
The answer is speed: 4.7 km/h, velocity: 3.3 km/h.
Distances and time are given:
d1 = 4 km
d2 = 3 km
d3 = 5 km
t = 1.5 h
The speed can be expressed as a distance (d) divided by time (t). The average speed (s) is total distance travelled divided by time:
s = (d1 + d2)/t = (4+3)/1.5 = 7/1.5 = 4.7 km/h
The average velocity (v) is total displacement (d₁) from the starting point divided by time. Since Mary's starting point was home, and she walked to the supermarket, which is 5.0 kilometers from her own home, her displacement is 5 km:
v = d₁/t = 5/1.5 = 3.3 km/h
Answer:
Shiny metals such as copper, silver, and gold are often used for decorative arts, jewelry, and coins.
Strong metals such as iron and metal alloys such as stainless steel are used to build structures, ships, and vehicles including cars, trains, and trucks.
Some metals have specific qualities that dictate their use. For example, copper is a good choice for wiring because it is particularly good at conducting electricity. Tungsten is used for the filaments of light bulbs because it glows white-hot without melting.
Nonmetals are plentiful and useful. These are among the most commonly used:
Oxygen, a gas, is absolutely essential to human life. Not only do we breathe it and use it for medical purposes, but we also use it as an important element in combustion.
Sulfur is valued for its medical properties and as an important ingredient in many chemical solutions. Sulfuric acid is an important tool for industry, used in batteries and manufacturing.
Chlorine is a powerful disinfectant. It is used to purify water for drinking and fill swimming pools.
Explanation:
Answer:
Thomson's model showed an atom that had a positively charged medium, or space, with negatively charged electrons inside the medium. After its proposal, the model was called a "plum pudding" model because the positive medium was like a pudding, with electrons, or plums, inside.