The latent heat of fusion refers to the solid to liquid or liquid to solid states.
Answer: Option C
<u>Explanation:
</u>
It is known that the inter conversion process from the states of solid to liquid is referred as fusion. So, for these conversions, the external energy in the heat form should be supplied to solid.
This external energy should be greater than the latent heat of solid in order to successfully break the bonds to form liquid. So the change in the enthalpy of the reaction while conversion from solids to liquids are termed as latent heats of fusion.
Even the inter-conversion from liquid to solid state will undergo change in enthalpy where the heat will be released and that is termed as latent heats of solidification. It is found that latent heat of solidification is equal in magnitude but opposite in direction with the latent heats of fusion.
It is a field of study that make direct use of phenomena that is "quantum-mechanincal", such as superposition and entanglement. It's used to perform operations on data
Answer:A i think or D but its not c or b
Explanation:
The magnification of the ornament is 0.25
To calculate the magnification of the ornament, first, we need to find the image distance.
Formula:
- 1/f = u⁻¹+v⁻¹.................... Equation 1
Where:
- f = Focal length of the ornament
- u = image distance
- v = object distance.
make u the subject of the equation
- u = fv/(f+v)................ Equation 2
From the question,
Given:
Substitute these values into equation 2
- u = (12×4)/(12+4)
- u = 48/16
- u = 3 cm.
Finally, to get the magnification of the ornament, we use the formula below.
- M = u/v.................. Equation 3
Where
- M = magnification of the ornament.
Substitute these values above into equation 3
Hence, The magnification of the ornament is 0.25
Answer:
Number of revolutions=1.532 revolutions
Explanation:
Given data
Distance s=8.0 m
Angular speed a=1.2 rev/s
To find
Number of revolutions
Solution
From the equation of simple motion we not that

So for the number of revolutions she makes is given as
