Answer: 13.1 μH
Explanation:
Given
length of heating coil, l = 1 m
Diameter of heating coil, d = 0.8 cm = 8*10^-3 m
No of loops, N = 400
L = μN²A / l
where
μ = 4π*10^-7 = 1.26*10^-6 T
A = πd²/4 = (π * .008 * .008) / 4 = 6.4*10^-5 m²
L = μN²A / l
L = [1.26*10^-6 * 400 * 400* 6.5*10^-5] / 1
L = 1.26*10^-6 * 1.6*10^5 * 6.5*10^-5
L = 1.31*10^-5
L = 13.1 μH
Thus, from the calculations above, we can say that the total self inductance of the solenoid is 13.1 μH
Data:
The charge of a body depends on the amount of electrons it gains or loses. Q = n * e, where "Q" is charge, "n" is the number of plus or minus electrons, and "e" is the fundamental charge of an electron
<span>. To know if the body has gained or lost, we look at the signal of its charge, remembering that the electron is negative. The charge of the body is 4 μC (positive), so there is a lack of electrons!
Q = 4 </span>μC →
<span>
We have:
</span>
We define acceleration as the rate of change of the velocity
Thus, if you have positive velocity and positive acceleration, your <u>speed increases.</u>
If you have positive velocity and negative acceleration, your speed decreases.
Now you get the idea, we will see that the correct option is graph 1.
We know that the car moves towards the right (let's define this as "the car has positive velocity") and we also know that te car is slowing down constantly (thus the acceleration needs to be negative and constant).
By looking at the graphs, the only one with these properties is graph 1.
If you want to learn more, you can read:
brainly.com/question/12550364
The gravitational constant (G) in its base SI units is
3/2
m
3
k
g
/
s
2
But is often seen written as
⋅
N
⋅
2/2
m
2
/
k
g
2
Where N is the Newton unit. N=kg ⋅
⋅
m/s 2
2
Answer:
As collision is elastic,thus we can use conservation of momentum equation
mA=0.2 kg
(vB)1=0 m/s.......................as it is on rest before collision
(vA)1=4 m/s
(vA)2=-1 m/s
(vB)2=2 m/s
using equation
(mA*vA+mB*vB)1= (mA*vA+mB*vB)2
Where 1 and 2 represents before and after collision
(0.2*4)+(mB*0)=(0.2*-1)+(mB*2)
0.8=-0.2+(2mB)
mass of object B=mB=0.3 Kg