You can check your answer by multiplying 3 with 4 <span>and then add 6 to the product. Then your result will be 18.</span>
Answer:
(b) 21.4
Step-by-step explanation:
There are a couple of interesting relations regarding chords and secants and tangents of a circle. With the right point of view, they can be viewed as variations of the same relation, possibly making them easier to remember.
When chords cross inside a circle (as here), each divides the other into two parts. The product of the lengths of the two parts of one chord is the same as the product of the lengths of the two parts of the other chord.
Here, that means ...
7x = 10·15
x = 150/7 = 21 3/7 ≈ 21.4
_____
<em>Additional comment</em>
A secant is a line that intersects a circle in two places. (A tangent is a special case of secant where the two points of intersection are the same point.) When two secants meet outside the circle, there is a special relation between the lengths of the various line segments.
Consider the line segment from the point where the secants meet each other to the far intersection point with the circle. The product of that length and the length to the near intersection point with the circle is the same for both secants.
Here's the viewpoint that merges these two relations:
<em>The product of the lengths from the point of intersection of the lines with each other to the two points of intersection with the circle is the same for each line</em>.
(Note that when the "secant" is a tangent, that product is the square of the distance from the tangent point to the point of intersection with the other line--the distance to the circle multiplied by itself.)
Answer:
t/218 = 156
Step-by-step explanation:
Your answer is in the picture above
Answer:
13 ft/s
Step-by-step explanation:
t seconds after the boy passes under the balloon the distance between them is ...
d = √((15t)² +(45+5t)²) = √(250t² +450t +2025)
The rate of change of d with respect to t is ...
dd/dt = (500t +450)/(2√(250t² +450t +2025)) = (50t +45)/√(10t² +18t +81)
At t=3, this derivative evaluates to ...
dd/dt = (50·3 +45)/√(90+54+81) = 195/15 = 13
The distance between the boy and the balloon is increasing at the rate of 13 ft per second.
_____
The boy is moving horizontally at 15 ft/s, so his position relative to the spot under the balloon is 15t feet after t seconds.
The balloon starts at 45 feet above the boy and is moving upward at 5 ft/s, so its vertical distance from the spot under the balloon is 45+5t feet after t seconds.
The straight-line distance between the boy and the balloon is found as the hypotenuse of a right triangle with legs 15t and (45+5t). Using the Pythagorean theorem, that distance is ...
d = √((15t)² + (45+5t)²)