Answer:
<span>In the addition of hbr to 1-butyne the electrophile in the first step of the mechanism is <u>Hydrogen atom of HBr</u>.
Explanation:
In this reaction first of all HBr approaches the triple bond. A Pi Complex (weak inter-molecular interactions) is formed between the two molecules. And the triple bond attacks the partial positive hydrogen atom creating a negative charge on Bromine along with positive charge on itself (Sigma Complex). In second step the negative Bromide attacks the positive carbon of Butyne.</span>
Answer:
gold and copper
Explanation:
but I think there is 1 more
1s2 2s2 2p6 3s2 3p6 4s1
s orbital can hold 2 electron
p orbitals can hold 6 electron
Answer:
B. PROTONS EXHIBIT STRONGER PULL ON OUTER f ORBITALS
Explanation:
Lanthanide contraction is the greater than normal decrease in the ionic radius of the lanthanide series from atomic number 57 to atomic number 71. This decrease is rather not expected of the ionic radii of these elements and they result in the greater decrease in the subsequent series of the lanthanides from the atomic number 72. The cause of which is as a result of the poor shielding effects of the nuclear charge around the electrons of the f orbitals. So therefore, protons are strongly pulled out of the 4f orbital and as a result of the poor shielding effect which causes the electrons of the 6s orbitals to be drawn more closer to the nucleus and hence resulting in a smaller atomic radii. It is worthy to note that the shielding effects of the inner electrons decreasing from s orbital to the f orbital; that is s > p > d > f. So from the decrease in the shielding effects from s to the f orbitals, lanthanide contraction results from the inability of the orbitals far away from s like the 4f orbiatls to shield the outermost shells of the lanthanide elements. So the cause of lanthanide contraction is the action of the protons which strongly pull the electrons of the f orbitals because of the poor shielding effects due to the distance of this orbital from the nucleus.
Answer:
112.18 g.
Explanation:
you're using stoichiometry to find the mass of the compound S₃O.