Answer:
A. All the molecules or atoms in motion have kinetic energy.
B. All the molecules or atoms in motion have thermal energy.
C. Each molecule or atom in motion has thermal energy.
D. Each molecule or atom in motion has kinetic energy.
Explanation:
<span>Only if they have the same mass.</span>
This problem is providing us with the mass of hydrochloric acid and the volume of solution and asks for the pH of the resulting solution, which turns out to be 1.477.
<h3>pH calculations</h3>
In chemistry, one can calculate the pH of a solution by firstly obtaining its molarity as the division of the moles of solute by the liters of solution, so in this case for HCl we have:

Next, due to the fact that hydrochloric acid is a strong acid, we realize its concentration is nearly the same to the released hydrogen ions to the solution upon ionization. Thereby, the resulting pH is:

Which conserves as much decimals as significant figures in the molarity.
Learn more about pH calculations: brainly.com/question/1195974
CrO and Cr₂O₃ make up the simplest chromium oxide formula.
What name does Cr₂O₃ use?
- Chromium oxide (Cr₂O₃)sometimes referred to as chromium sesquioxide or chromic oxide, is a compound in which chromium is oxidized to a +3 state. Sodium dichromate is calcined with either carbon or sulfur to produce it.
- Eskolaite, a mineral that bears the name of the Finnish geologist Pentti Eskola, is a kind of chromium oxide green that may be found in nature. The metallic glassy green surface of this unusual material has an unsettling moss-like look that may be used to conceal oneself in the environment.
- Studies on humans have conclusively shown that chromium (VI) breathed is a potential carcinogen, increasing the likelihood of developing lung cancer. According to animal studies, chromium (VI) exposure by inhalation can result in lung cancers.
Learn more about chromium here:
brainly.com/question/15588080
#SPJ4
Answer:
A/1. 10.9 mol O2
Explanation:
583 g x 1 mol SO3 x 3 mol O2 /
80.057 g mol SO3 x 2 mol SO3
- You just need to find molar mass of SO3, which is 80.057 g.
- Everything else came from formula. Further explanation...
- Always start with what they give, such as 583 g. Then find 1 mol of what is being produced, in this it is SO3. We already found this because we did molar mass above. Next. find how many moles of what they want, which is O2. Look in equation and you can see 3 mol in from of O2. Next, do the same for SO3 and you can find 3 mol in front of that. Lastly, just do the math.
- If you need a further explanation or more help on any problems I would be happy to help, just let me know.