Answer:
cos 2Ф = - 161/289 , tan 2Ф = - 240/161
Step-by-step explanation:
* Lets explain how to solve the problem
∵ cos Ф = - 8/17
∵ Ф lies in the 3rd quadrant
- In the 3rd quadrant sin and cos are negative values, but tan is
a positive value
∵ sin²Ф + cos²Ф = 1
∴ sin²Ф + (-8/17)² = 1
∴ sin²Ф + 64/289 = 1
- Subtract 64/289 from both sides
∴ sin²Ф = 225/289 ⇒ take √ for both sides
∴ sin Ф = ± 15/17
∵ Ф lies in the 3rd quadrant
∴ sin Ф = -15/17
∵ cos 2Ф = 2cos²Ф - 1 ⇒ the rule of the double angle
∵ cos Ф = - 8/17
∴ cos 2Ф = 2(-8/17)² - 1 = (128/289) - 1 = - 161/289
* cos 2Ф = - 161/289
∵ tan 2Ф = sin 2Ф/cos 2Ф
∵ sin 2Ф = 2 sin Ф × cos Ф
∵ sin Ф = - 15/17 and cos Ф = - 8/17
∴ sin 2Ф = 2 × (-15/17) × (-8/17) = 240/289
∵ cos 2Ф = - 161/289
∴ tan 2Ф = (240/289)/(-161/289) = - 240/161
* tan 2Ф = - 240/161
It would be: 5.99*20/100 = 1.198
Answer:
x= 3
Step-by-step explanation:
∠RTS +∠RST= ∠QRT (ext. ∠ of △RST)
(25x)° +(57 +x)°= (45x)°
25x° +x° +57°= 45x°
26x° +57°= 45x°
45x° -26x°= 57°
19x°= 57°
x°= 57° ÷19
x°= 3°
∴ x= 3
Alternatively, find the measure of the angle RST using ∠ sum of triangle then find ∠QRT using adjacent angles on a straight line. Equate this value to 45x and solve for x.