Answer:
In the first law, an object will not change its motion unless a force acts on it. In the second law, the force on an object is equal to its mass times its acceleration. In the third law, when two objects interact, they apply forces to each other of equal magnitude and opposite direction
Explanation:
Answer:
271.862 N/m
Explanation:
From Hook's Law,
mgh = 1/2ke²............... Equation 1
Where
m = mass of the ball, g = acceleration due to gravity, k = spring constant, e = extension, h = height fro which the ball was dropped.
Making k the subject of the equation,
k =2mgh/k²....................... Equation 2
Note: The potential energy of the ball is equal to the elastic potential energy of the spring.
Given: m = 60.3 g = 0.0603 kg, g = 9.8 m/s², e = 4.68317 cm = 0.0468317 m, h = 53.7 cm = 0.537 m
Substitute into equation 2
k = 2(0.0603)(9.8)(0.537)/0.048317²
k = 0.6346696/0.0023345
k = 271.862 N/m
Answer:
Frequency = 1,550Hz
Explanation:
To solve this we can use the equation:
(frequency = velocity/wavelength).
We are given the information that the wavelength is 22cm and the speed is 340m/s. The first step is to make sure everything is in the correct units (SI units), and to convert them if needed. The SI Units for velocity and wavelength are m/s and m respectively. This means we need to convert 22cm into meters, which we can do by dividing by 100, (as there are 100cm in a meter). 22/100 = 0.22m
Now we can substitute these values into the formula and calculate to solve:

Simplify to 3 significant figures:
f = 1,550Hz
(Which I believe is just below a G6 if you were interested)
Hope this helped!
Answer:

Explanation:
using the law of the conservation of energy:


where K is the spring constant, x is the spring compression, N is the normal force of the block,
is the coefficiet of kinetic friction and d is the distance.
Also, by laws of newton, N is calculated by:
N = mg
N = 3.35 kg * 9.81 m/s
N = 32.8635
So, Replacing values on the first equation, we get:

solving for
:

Answer:
minimum mass of the neutron star = 1.624 × 10^30 kg
Explanation:
For a material to remain on the surface of a rapidly rotating neuron star, the magnitude oĺf the gravitational acceleration on the material must be equal to the magnitude of the centripetal acceleration of the rotating neuron star.
This can be represented by the explanations in the attached document.
minimum mass of the neutron star = 1.624 × 10^30 kg