Answer:
<h2>A)x=3/2 y=½</h2>
Step-by-step explanation:
<h3>to understand this</h3><h3>you need to know about:</h3>
- system of linear equation
- PEMDAS
<h3>let's solve:</h3>
- since y is equal to both equation therefore we can substitute the value of y into the other equation




let's figure out y
- substitute the got value of x into the second equation: y=3*3/2 -4
- simplify multiplication:9/2 -4
- simplify division:4.5-4
- substract:0.5 alternate form:y=½
Esto significa que debemos tener 58 páginas de plástico para contener las 517 tarjetas.´
<h3>¿Cuántas páginas se necesitarán para almacenar 517 tarjetas? </h3>
Sabemos que cada página puede almacenar hasta 9 cartas.
Entonces queremos ver cuantos grupos de 9 cartas hay en el conjunto de 517, para ver esto tomamos el cociente entre 517 y 9.
N = 517/9 = 57.44
Y no podemos tener un numero racional, así que debemos redondear al proximo número entero, que es 58.
Esto significa que debemos tener 58 páginas de plástico para contener las 517 tarjetas.
Sí quieres aprender más sobre cocientes:
brainly.com/question/3493733
#SPJ1
Answer:
549
Step-by-step explanation:
A calculator can give you an equivalent expression.
I might work from the middle outward:
= 486 -3 +33×2
= 483 +66
= (480 +60) + (3 +6)
= 540 + 9
= 549
The two cars will be 5.5 miles apart after 5.5 hours.
Step-by-step explanation:
Given,
Speed of first car = 57 mph
Time = 5.5 hours
Distance covered by first car = Speed * Time
Distance covered by first car = 57*5.5 = 313.5 miles
Speed of other car = 58 mph
Distance covered by other car = 58*5.5 = 319 miles
Difference = 319 - 313.5
Difference = 5.5 miles
The two cars will be 5.5 miles apart after 5.5 hours.
Keywords: speed, distance
Learn more about distance at:
#LearnwithBrainly
We use the given data above to calculate the volume of gasoline that is being burned per minute by commercial airplanes.
Amount burned of 1 commercial airplane = <span>3.9 × 10³ ml of gasoline per second
Number of airplanes = </span><span>5.1 × 10³ airplanes
We calculate as follows:
</span> 3.9 × 10³ ml of gasoline per second / 1 airplane (5.1 × 10³ airplanes)(60 second / 1 min ) = <span>1.2 x 10^9 mL / min</span>