Answer:

final velocity =97km/h(change to m/s) =26.9m/s NEVER FORGET TO DO THAT BECAUSE TIME IS GIVEN IN SECONDS
initial velocity 0 m/s
time 8.4s


<span>It takes 6.78 seconds for the coin to hit the bottom of the well. We can use the equation h = 0.5gt^2, where h is the height of the coin, g is the gravitational constant of 9.8m/s^2, and t is the time is takes for the coin to hit the bottom of the well. Solve for t to obtain 6.87 seconds.</span>
It never disappears I believe
Answer:11.27 Nm
Explanation:
Given
mass of bucket with water is 
radius of cylinder 
If the cylinder is not permitted to rotate
Torque is given by the product of Force and distance of force from axis of rotation

where F=weight of bucket with water




Complete Question
A small object moves along the x-axis with acceleration ax(t) = −(0.0320m/s3)(15.0s−t)−(0.0320m/s3)(15.0s−t). At t = 0 the object is at x = -14.0 m and has velocity v0x = 7.10 m/s. What is the x-coordinate of the object when t = 10.0 s?
Answer:
The position of the object at t = 10s is 
Explanation:
From the question we are told that
The acceleration along the x axis is 
The position of the object at t = 0 is x = -14.0 m
The velocity at t = 0 s is 
Generally from the equation for acceleration along x axis we have that

=> 
=> ![V_{x} = -0.032 [15t - \frac{t^2 }{2} ]+ K_1](https://tex.z-dn.net/?f=V_%7Bx%7D%20%3D%20-0.032%20%5B15t%20-%20%5Cfrac%7Bt%5E2%20%7D%7B2%7D%20%5D%2B%20K_1)
At t =0 s and 
=> ![7.10 = -0.032 [15(0) - \frac{(0)^2 }{2} ]+ K_1](https://tex.z-dn.net/?f=7.10%20%20%3D%20-0.032%20%5B15%280%29%20-%20%5Cfrac%7B%280%29%5E2%20%7D%7B2%7D%20%5D%2B%20K_1)
=>
So
![\frac{dX}{dt} = -0.032 [15t - \frac{t^2 }{2} ]+ K_1](https://tex.z-dn.net/?f=%5Cfrac%7BdX%7D%7Bdt%7D%20%20%3D%20-0.032%20%5B15t%20-%20%5Cfrac%7Bt%5E2%20%7D%7B2%7D%20%5D%2B%20K_1)
=> ![\int\limits dX = \int\limits [-0.032 [15t - \frac{t^2 }{2} ]+ K_1] }{dt}](https://tex.z-dn.net/?f=%5Cint%5Climits%20dX%20%20%3D%20%5Cint%5Climits%20%5B-0.032%20%5B15t%20-%20%5Cfrac%7Bt%5E2%20%7D%7B2%7D%20%5D%2B%20K_1%5D%20%7D%7Bdt%7D)
=> ![X = -0.032 [ 15\frac{t^2}{2} - \frac{t^3 }{6} ]+ K_1t +K_2](https://tex.z-dn.net/?f=X%20%20%3D%20%20-0.032%20%5B%2015%5Cfrac%7Bt%5E2%7D%7B2%7D%20%20-%20%5Cfrac%7Bt%5E3%20%7D%7B6%7D%20%5D%2B%20K_1t%20%2BK_2)
At t =0 s and x = -14.0 m
![-14 = -0.032 [ 15\frac{0^2}{2} - \frac{0^3 }{6} ]+ K_1(0) +K_2](https://tex.z-dn.net/?f=-14%20%20%3D%20%20-0.032%20%5B%2015%5Cfrac%7B0%5E2%7D%7B2%7D%20%20-%20%5Cfrac%7B0%5E3%20%7D%7B6%7D%20%5D%2B%20K_1%280%29%20%2BK_2)
=> 
So
![X = -0.032 [ 15\frac{t^2}{2} - \frac{t^3 }{6} ]+ 7.10 t -14](https://tex.z-dn.net/?f=X%20%20%3D%20%20-0.032%20%5B%2015%5Cfrac%7Bt%5E2%7D%7B2%7D%20%20-%20%5Cfrac%7Bt%5E3%20%7D%7B6%7D%20%5D%2B%207.10%20t%20-14)
At t = 10.0 s
![X = -0.032 [ 15\frac{10^2}{2} - \frac{10^3 }{6} ]+ 7.10 (10) -14](https://tex.z-dn.net/?f=X%20%20%3D%20%20-0.032%20%5B%2015%5Cfrac%7B10%5E2%7D%7B2%7D%20%20-%20%5Cfrac%7B10%5E3%20%7D%7B6%7D%20%5D%2B%207.10%20%2810%29%20-14)
=> 