Answer:
α = 2,857 10⁻⁵ ºC⁻¹
Explanation:
The thermal expansion of materials is described by the expression
ΔL = α Lo ΔT
α = 
in the case of the bar the expansion is
ΔL = L_f - L₀
ΔL= 1.002 -1
ΔL = 0.002 m
the temperature variation is
ΔT = 100 - 30
ΔT = 70º C
we calculate
α = 0.002 / 1 70
α = 2,857 10⁻⁵ ºC⁻¹
Answer: Smoke is Abiotic because it is not a living thing.
Explanation: Hopefully this helps u. Have a great rest of your day. I hope this is the right answer
Your answer:
In Greek mythology, this constellation is related with the time the Olympian gods sought refuge in Egypt. Unfortunately, following their epic fighting with the Titans, peace did not closing for long, as the monster Typhon, son of the Titan Tartarus and Earth, sought revenge. Typhon was once a fearsome fire-breathing creature, taller than mountains and with palms which possessed dragons' heads in region of fingers. The Olympian gods sought to break out by way of adopting a number disguises: Zeus, a ram - Hera, a white cow, Bacchus (another model of the fable suggests Pan) a goat. As Typhon approached, Bacchus/Pan threw himself into the Nile but, in a panic, solely succeeded in altering part of his body, ending up with a goat's physique and the tail of a fish. Meanwhile, Zeus had been dismembered via Typhon, however was saved when Bacchus/Pan let out an ear-splitting yell, distracting the monster lengthy ample for an agile Hermes to gather the supreme god's limbs and cautiously fix him. In gratitude, Zeus transferred Bacchus/Pan to the heavens.
Use stronger magnets
increase current
push magnets closer to coil
adding more sets of coils
Question: A ship anchored at sea is rocked by waves that have crests 100 m apart the waves travel at 70m/S, at what frequency do the waves reach the ship?
Answer:
0.7 Hz
Explanation:
Applying,
v = λf............... Equation 1
Where v = velocity of the wave, f = frequency fo the wave, λ = wavelength of the wave
make f the subject of the equation
f = v/λ................. Equation 2
From the question,
Given: v = 70 m/s, λ = 100 m ( distance between successive crest)
Substitute these values into equation 2
f = 70/100
f = 0.7 Hz
Hence the frequency at which the wave reach the ship is 0.7 Hz