Answer:
The shortest distance is
Explanation:
The free body diagram of this question is shown on the first uploaded image
From the question we are told that
The speed of the bicycle is 
The distance between the axial is 
The mass center of the cyclist and the bicycle is
behind the front axle
The mass center of the cyclist and the bicycle is
above the ground
For the bicycle not to be thrown over the
Momentum about the back wheel must be zero so

=> 
=> 
Here 
So 
Apply the equation of motion to this motion we have

Where 
and
since the bicycle is coming to a stop

=>
Answer:
angular speed = 0.4 rad/s
Explanation:
given data
radius = 5 m
moment of inertia = 2000 kg-m²
angular speed = 1.0 rad/s
mass = 60 kg
to find out
angular speed
solution
Rotational momentum of merry-go-round = I?
we get here momentum that is express as
momentum = 2000 × 1
momentum = 2000 kg-m²/s
and
Inertia of people will be here as
Inertia of people = mr² = 60 × 5²
Inertia of people = 1500 kg-m²
so Inertia of people for two people
1500 × 2 = 3000
and
now conserving angular momentum(ω)
moment of inertia × angular speed = ( momentum + Inertia of people ) angular momentum
2000 × 1 = (2000 + 3000 ) ω
solve we get now
ω = 0.4 rad/s
By adding up all the individual forces of the object
If you're referring to the different colors that usually occur at the tip of missles, rockets and some other aircraft, it either a) signifies the end of a particular plate of metal, fabricated specifically to be for the nose. Sometimes these can even be a different alloy or metal all together. or b) this shows where the curved surface begins, so in the case of damage or imperfections due to wear, they can be repaired and measured more easily. The shape of the nose is extremely important for smooth flight, and a dent or bump formed on it can make the aircraft unstable. If you can measure from where the curve starts by the difference in color, it makes repairing or re-fabricating the part much easier. Many of these curves aren't as simple as they appear.
Voltage is the difference in charge between two points.
Current is the rate the charge flows
Resistance is the tendency a material has to resist the flow of charge (current)
Combining voltage resistance and current Ohm developed the formula
V (Voltage)= I (Current) x R (Resistance)