Answer:
A piece of unknown solid substance weighs 437.2 g, and requires 8460 J to increase its temperature from 19.3 °C to 68.9 °C.
What is the specific heat of the substance?
If it is one of the substances found in Table 8.1.1, what is its likely identity?
Answer:
you tilt the cylinder at a slight angle so that the metal slides down the sides, rather than drops all it`s weight to the bottom
The closer to the top the metal is in the list, the more active the metal is and the stronger a reducing agent the metal is. When two different metals are involved in a redox reaction, the metal higher in the list will be oxidized and give up electrons that will reduce the cation of the less active metal.
Answer:
Cl^-<NO3^-<H2O<F^-<CN^-
Explanation:
When we talk about base strength we are referring to how easily a chemical specie accepts protons.
The greater the ability of a specie to accept H^+, the greater its base strength.
The order of increasing base strengths of the species listed are shown in the answer above.
Answer:
a) a0 was 46.2 grams
b) It will take 259 years
c) The fossil is 1845 years old
Explanation:
<em>An unknown radioactive substance has a half-life of 3.20hours . If 46.2g of the substance is currently present, what mass A0 was present 8.00 hours ago?</em>
A = A0 * (1/2)^(t/h)
⇒ with A = the final amount = 46.2 grams
⇒ A0 = the original amount
⇒ t = time = 8 hours
⇒ h = half-life time = 3.2 hours
46.2 = Ao*(1/2)^(8/3.2)
Ao = 261.35 grams
<em>Americium-241 is used in some smoke detectors. It is an alpha emitter with a half-life of 432 years. How long will it take in years for 34.0% of an Am-241 sample to decay?</em>
t = (ln(0.66))-0.693) * 432 = 259 years
It will take 259 years
<em>A fossil was analyzed and determined to have a carbon-14 level that is 80% that of living organisms. The half-life of C-14 is 5730 years. How old is the fossil?</em>
<em />
t = (ln(0.80))-0.693) * 5730 = 1845
The fossil is 1845 years old