From equation;
P1V1=P2V2
V2=P1V1÷P2
since P2=380mmHg
now;1atm=760mmHg
how about 380mmHg is equal to how many atm?
380×1÷760=0.5atm
P2 now is equal to 0.5atm
back from equation;
P1V1=P2V2
V2=P1V1÷P2
V2=4.0atm×2.0L÷0.5atm
V2=16L
therefore V2=16L.
Carbon Dioxide has two polar C=O. bonds, but the geometry of Carbon dioxide is linear so that the two bond dipole moments cancel and there is no net molecular dipole moment; the molecule is nonpolar.
I hope this helps :)
Answer:
A = Molarity = 0.22 M
B = Molarity = 0.36 M
Explanation:
Given data:
For first solution:
number of moles = 0.550 mol
Volume of solution = 2.50 L
Molarity = ?
Molarity:
Formula:
Molarity = number of moles of solute / volume of solution in L.
Molarity = 0.550 mol / 2.50 L
Molarity = 0.22 M
For second solution:
Mass of NaCl = 15.7 g
Volume of solution = 709 mL or 709/1000 = 0.709 L
Molarity = ?
Solution:
Number of moles = mass / molar mass
Number of moles = 14.7 g/ 58.44 g/mol
Number of moles = 0.252 mol
Molarity:
Molarity = number of moles of solute / volume of solution in L.
Molarity = 0.252 mol / 0.709 L
Molarity = 0.36 M
Answer:
Environment A is not undergoing succession, and Environment B is.
Explanation:
Ecological succession is a gradual process in which ecosystems significantly change over time. Ecological succession is a term used by scientists to describe the change in the structure of a community of different species, or ecosystem. This concept of ecological succession stems from a desire to understand the patterns of change in large and complex ecosystems like forests and how they can exist in places known to be recently formed, such as volcanic islands.
In environment A, the ecosystem is not really changing, organisms are merely returning to their natural habitat. It does not represent any change in the ecosystem.
In environment B, the original ecosystem has become grossly modified, first by the appearance of lichen and mosses and subsequently by grasses shrubs and animals. These sequence of events correlate well with the idea of ecological succession presented in the opening paragraph hence environment B is undergoing ecological succession.
<u>Answer:</u> The
for the reaction is -1052.8 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)

(2)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[1\times \Delta H_1]+[1\times (-\Delta H_2)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B1%5Ctimes%20%5CDelta%20H_1%5D%2B%5B1%5Ctimes%20%28-%5CDelta%20H_2%29%5D)
Putting values in above equation, we get:

Hence, the
for the reaction is -1052.8 kJ.