Answer:
1.04 s
Explanation:
The computation is shown below:
As we know that
t = t' × 1 ÷ (√(1 - (v/c)^2)
here
v = 0.5c
t = 1.20 -s
So,
1.20 = t' × 1 ÷ (√(1 - (0.5/c)^2)
1.20 = t' × 1 ÷ (√(1 - (0.5)^2)
1.20 = t' ÷ √0.75
1.20 = t' ÷ 0.866
t' = 0.866 × 1.20
= 1.04 s
The above formula should be applied
The velocity at the maximum height will always be 0. Therefore, you will count your final velocity as 0, and your initial velocity as 35 m/s. Next, we know that the acceleration will be 9.8 m/s^2. How? Because the ball is thrown directly upward, and the only force acting on it will be the force of gravity pushing it back down.
The formula we use is h = (Vf^2 - Vi^2) / (2*-9.8m/s^2)
Plugging everything in, we have h = (0-1225)/(19.6) = 62.5 meters is the maximum height.
The answer is 570 J. The kinetic energy has the formula of 1/2mV². The total work in this process W= 1/2m(V2²-V1²) = 1/2 * 15.0 * (11.5²-7.50²) = 570 J.
<span>If the current decreases uniformly from 5.00A to 2.00 A in 3.00ms , the self-induced emf in the coil. =70.02025 V </span>