<h2>Reffer the attachment </h2>
Mark as brainlist ❤️❤️
Answer:
Ft = 17.48°C
Explanation:
Ft is the final temperature. However, ice absorbs heat during two process of melting and cooling and as such, there is no loss of heat to or from the surrounding hence by conservation of energy.
Therefore,
Heat absorbed by water of 20g = heat rejected by water of 265g.
So; M(ice)[C(ice) [(ΔT) + LH(ice) + C(water)(ΔT)] = C(water) M(water) (ΔT)
So, 20[(2.108) [0 - (-20)] + 333.5 + 4.187(Ft - 0)]] = (285)(4.187) (25 - Ft)
To get;
7513 + 83.74 Ft = 29832.4 - 1193.3 Ft
So factorizing, we get;
83.74 Ft + 1193.3 Ft = 29832.4 - 7513
So; 1277.04 Ft = 22319.4
So; Ft = 22319.4/1277.04 = 17.48°C
To solve this problem it is necessary to apply the concepts related to the Stefan-Boltzmann law which establishes that a black body emits thermal radiation with a total hemispheric emissive power (W / m²) proportional to the fourth power of its temperature.
Heat flow is obtained as follows:

Where,
F =View Factor
A = Cross sectional Area
Stefan-Boltzmann constant
T= Temperature
Our values are given as
D = 0.6m

The view factor between two coaxial parallel disks would be


Then the view factor between base to top surface of the cylinder becomes
. From the summation rule


Then the net rate of radiation heat transfer from the disks to the environment is calculated as





Therefore the rate heat radiation is 780.76W
Answer:
I don't know the answer I hope you find it tho good luck##
To answer, evaluate the power of 10 in the given choices. If it is positve, move the decimal n places to the right. If it is negative, move the decimal n corresponding places to the left. From all the choices given, only the choices D, E, and F will give us the correct answer.