Answer:
I think she used 180 tablespoons of butter this month.
Step-by-step explanation:
Had to look for the options for this question and here is my answer.
Based on the given scenario above regarding Heather school's scheduling, I can say that the question that would be the most appropriate for her to ask is "How do you feel about your child having to take summer school in order to graduate based on this traditional schedule?" Hope this helps.
H(t) = -16t² + 60t + 95
g(t) = 20 + 38.7t
h(1) = -16(1²) + 60(1) + 95 = -16 + 60 + 95 = -16 + 155 = 139
h(2) = -16(2²) + 60(2) + 95 = -16(4) + 120 + 95 = -64 + 215 = 151
h(3) = -16(3²) + 60(3) + 95 = -16(9) + 180 + 95 = -144 + 275 = 131
h(4) = -16(4²) + 60(4) + 95 = -16(16) + 240 + 95 = -256 + 335 = 79
g(1) = 20 + 38.7(1) = 20 + 38.7 = 58.7
g(2) = 20 + 38.7(2) = 20 + 77.4 = 97.4
g(3) = 20 + 38.7(3) = 20 + 116.1 = 136.1
g(4) = 20 + 38.7(4) = 20 + 154.8 = 174.8
Between 2 and 3 seconds.
The range of the 1st object is 151 to 131.
The range of the 2nd object is 97.4 to 136.1
h(t) = g(t) ⇒ 131 = 131
<span>It means that the point where the 2 objects are equal is the point where the 1st object is falling down while the 2nd object is still going up. </span>
9514 1404 393
Answer:
14.1 years
Step-by-step explanation:
Use the compound interest formula and solve for t. Logarithms are involved.
A = P(1 +r/n)^(nt)
amount when P is invested for t years at annual rate r compounded n times per year.
Using the given values, we have ...
13060 = 8800(1 +0.028/365)^(365t)
13060/8800 = (1 +0.028/365)^(365t) . . . . divide by P=8800
Now we take logarithms to make this a linear equation.
log(13060/8800) = (365t)log(1 +0.028/365)
Dividing by the coefficient of t gives us ...
t = log(13060/8800)/(365·log(1 +0.028/365)) ≈ 0.171461/0.0121598
t ≈ 14.1
It would take about 14.1 years for the value to reach $13,060.