Answer:
-177.9 kJ.
Explanation:
Use Hess's law. Ca(s) + CO2(g) + 1/2O2(g) → CaCO3(s) ΔH = -812.8 kJ 2Ca(s) + O2(g) → 2CaO(s) ΔH = -1269.8 kJ We need to get rid of the Ca and O2 in the equations, so we need to change the equations so that they're on both sides so they "cancel" out, similar to a system of equations. I changed the second equation. Ca(s) + CO2(g) + 1/2O2(g) → CaCO3(s) ΔH = -812.8 kJ 2CaO(s) → 2Ca(s) + O2(g) ΔH = +1269.8 kJ The sign changes in the second equation above since the reaction changed direction. Next, we need to multiply the first equation by two in order to get the coefficients of the Ca and O2 to match those in the second equation. We also multiply the enthalpy of the first equation by 2. 2Ca(s) + 2CO2(g) + O2(g) → 2CaCO3(s) ΔH = -1625.6 kJ 2CaO(s) → 2Ca(s) + O2(g) ΔH = +1269.8 kJ Now we add the two equations. The O2 and 2Ca "cancel" since they're on opposite sides of the arrow. Think of it more mathematically. We add the two enthalpies and get 2CaO(s) + 2CO2(g) → 2CaCO3(s) and ΔH = -355.8 kJ. Finally divide by two to get the given equation: CaO(s) + CO2(g) → CaCO3(s) and ΔH = -177.9 kJ.
Answer:
Your answer I believe will be C. To determine the probability that an offspring would have a specific trait.
The answer is C. increasing the temperature of the liquid.
Increasing the temperature of the liquid also means that you are providing energy to the liquid, which makes the molecules overcome intermolecular attractive forces, move more constantly, and become gas molecules.
Hope this would help~
Answer:
- 40.66
- 9.91
Explanation:
For the first question:
Our theoretical compound is MR₂
1 mol of MR₂ contains 1 mol of M and 2 moles of R
Let's find out the molar mass:
9.45 g/mol + 18.12 g/mol . 2 = 45.69 g/mol
We can solve this, by an easy rule of three:
1 mol of MR₂ weighs 45.69 grams
Then, 0.89 moles may weigh 40.66 g
For the second question:
Our theoretical compound is D₂G
Let's determine the molar mass:
11.45 g/mol . 2 + 44.57 g/mol = 67.47 g/mol
1 mol of anything contains 6.02×10²³ molecules. By this definition we can say that 6.02×10²³ molecules weigh 67.47 grams. Let's solve by the rule of three:
6.02×10²³ molecules weigh 67.47 g
8.84×10²² molecules may weigh (8.84×10²² . 67.47 ) / 6.02×10²³ = 9.91 g
Answer:

Explanation:
plz....
Mark it as a brilliant answer