Answer:
Hey there!
This is already rounded to four significant figures!
Zeroes after the decimal but before the 7 don't count, and 7, 0, 6, and 2 count as significant figures.
So, the answer would be 0.007062.
Let me know if this helps :)
This is a incomplete question. The complete question is:
It takes 348 kJ/mol to break a carbon-carbon single bond. Calculate the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon. Round your answer to correct number of significant digits
Answer: 344 nm
Explanation:
E= energy = 348kJ= 348000 J (1kJ=1000J)
N = avogadro's number = 
h = Planck's constant = 
c = speed of light = 

Thus the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon is 344 nm
Number of Carbon atoms = 3*1 + 1 = 3 + 1 = 4
In short, Your Answer would be Option B
Hope this helps!
The solubility of a sample will DECREASE when the size of the sample increases.
The bigger a substance is, the more will be the particles that make up this substance and the greater the amount of solvent that will be needed to dissolve the substance. Surface area of the substance is also important, a small surface area will impede solubility. Thus, when the size of a sample increases, the solubility decreases.