The motion of the molecules decreases.
<u>Explanation</u>:
- Gases are formed when the energy in a system overcomes the attractive forces between the molecules. The gases expand to fill the space they occupy. In this way, the gas molecules interact little. In the gaseous state, the molecules move very quickly. As the temperature decreases, the amount of movement of the individual molecules also decreases.
- The fast-moving particle slows down. When a particle speeds up, it has more kinetic energy. When a particle slows down, it has less kinetic energy. The particles in solid form are commonly connected through electrostatic powers. They don't get enough space to move around, therefore, their speed diminishes, they can't keep their standard speed like in the vaporous or fluid state.
Answer:
10.64
Explanation:
Let's consider the basic reaction of cyclohexamine, C₆H₁₁NH₂.
C₆H₁₁NH₂(aq) + H₂O(l) ⇄ C₆H₁₁NH₃⁺(aq) + OH⁻ pKb = 3.36
C₆H₁₁NH₃⁺ is its conjugate acid, since it donates H⁺ to form C₆H₁₁NH₂. C₆H₁₁NH₃⁺ acid reaction is as follows:
C₆H₁₁NH₃⁺(aq) + H₂O(l) ⇄ C₆H₁₁NH₂(aq) + H₃O⁺(aq) pKa
We can find the pKa of C₆H₁₁NH₃⁺ using the following expression.
pKa + pKb = 14.00
pKa = 14.00 - pKb = 14.00 - 3.36 = 10.64
<u>Given:</u>
Mass of H2O2 solution = 5.02 g
Mass of H2O2 = 0.153 g
<u>To determine: </u>
The % H2O2 in solution
<u>Explanation:</u>
Chemical reaction-
2H2O2(l) → 2H2O(l) + O2(g)
Mass % of a substance in a solution = (Mass of the substance/Mass of solution) * 100
In this case
% H2O2 = (Mass H2O2/Mass of solution)* 100 = (0.153/5.02)*100 = 3.05%
Ans: % H2O2 in the solution = 3.05%
Answer
The second part of the theory says all atoms of a given element are identical in mass and properties. The third part says compounds are combinations of two or more different types of atoms. The fourth part of the theory states that a chemical reaction is a rearrangement of atoms.
Explanation: