Answer:
Explanation:
<em>Heat</em> is a kind of energy.
The <em>kinetic theory </em>relates the heat with the movement of the particles: the more the particles move, the larger the kinetic energy of the system. The kinetic theory states that heat is the kinetic energy of the particles, atoms or molecules, in a substance, that is transferred from a substance at higher temperature to other substance at lower temperature.
Based on that principle, the kinetic theory explains the changes of phases of the substances in terms of the motion of the particles: the hotter an object the faster the particles move, the more energetic the particles are, and they occupy more space. Thus, when a solid is heated, the particles move faster and it can pass to liquid or gaseous state.
Answer:
isopropyl benzene (cumene)
Explanation:
The reaction of isopropyl chloride and AlCl3 and benzene belongs to the class of organic reactions known as the Friedel Kraft alkylation.
The mechanism of the reaction involves the formation of a tetrahedral complex [AlCl4]^-.
The electrophile now is the isopropyl group which attacks the benzene to yield the product.
Answer:
Colloids (heterogeneous)
The difference between a colloid and a suspension is that the particles will not settle to the bottom over a period of time, they will stay suspended or float. An example of a colloid is milk. Milk is a mixture of liquid butterfat globules dispersed and suspended in water.
The metric prefix name for 1/100 is centimeters.
Answer:
Ca²⁺ + 2 OH⁻ → Ca(OH)₂(s)
Explanation:
In chemistry, the net ionic equation is a way to write a chemical reaction whereas you write only the ions that are involved in the reaction.
When calcium chloride, CaCl₂ reacts with sodium hydroxide, NaOH to produce Ca(OH)₂ the only ions involved in the reaction are Ca²⁺ and OH⁻, thus, the balanced net ionic equation is:
<em>Ca²⁺ + 2 OH⁻ → Ca(OH)₂(s)</em>
<em>Cl⁻ and Na⁺ are not involved in the reaction and you don't have to write them.</em>