Answer:
0.482 ×10²³ molecules
Explanation:
Given data:
Volume of gas = 2.5 L
Temperature of gas = 50°C (50+273 = 323 k)
Pressure of gas = 650 mmHg (650/760 =0.86 atm)
Molecules of N₂= ?
Solution:
PV= nRT
n = PV/RT
n = 0.86 atm × 2.5 L /0.0821 atm. mol⁻¹. k⁻¹. L × 323 k
n = 2.15 atm. L /26.52 atm. mol⁻¹.L
n = 0.08 mol
Number of moles of N₂ are 0.08 mol.
Number of molecules:
one mole = 6.022 ×10²³ molecules
0.08×6.022 ×10²³ = 0.482 ×10²³ molecules
For a neutralization reaction, the value of q(heat of neutralization) is doubled when the concentration of only the acid is doubled.
A neutralization reaction is a reaction in which an acid reacts with a base to yield salt and water. Ionically, a neutralization reaction goes as follows; H^+(aq) + OH^-(aq) ------> H20(l).
The heat of neutralization (Q) of the system depends on the concentration of the solutions. Since Q is dependent on concentration, if the concentration of any of the reactants is doubled, more heat is evolved hence Q is doubled.
Learn more: brainly.com/question/10323185
Answer:
A
Explanation:
The purpose of the periodic table was to organize elements as they were discovered into periods and groups, according to their properties. It was not just a naming of elements, as a list.
Answer:
384.2 K
Explanation:
First we convert 27 °C to K:
- 27 °C + 273.16 = 300.16 K
With the absolute temperature we can use <em>Charles' law </em>to solve this problem. This law states that at constant pressure:
Where in this case:
We input the data:
300.16 K * 1600 m³ = T₂ * 1250 m³
And solve for T₂:
T₂ = 384.2 K
Answer:
Fe3(PO4)2
Explanation:
calculate the molar mass for each of the following compounds 7. PbSO
8. Ca(OH)2
9. Na3PO4
10. (NH4)2CO3
11. C6H12O6
12. Fe3(PO4)2
13. (NH4)2S
14. Zn(C2H3O2)2