The correct answer that would best complete the given statement above would be option 2. <span>The relationship between molecular velocities and temperature is a direct relationship. In other words, their relationship is directly proportional. Hope that this is the answer that you are looking for. </span>
Answer:
The approximate molar enthalpy of combustion of this substance is -66 kJ/mole.
Explanation:
First we have to calculate the heat gained by the calorimeter.

where,
q = Heat gained = ?
c = Specific heat = 
ΔT = The change in temperature = 3.08°C
Now put all the given values in the above formula, we get:


Now we have to calculate molar enthalpy of combustion of this substance :

where,
= enthalpy change = ?
q = heat gained = 8.2544kJ
n = number of moles methane = 

Therefore, the approximate molar enthalpy of combustion of this substance is -66 kJ/mole.
The mass of a substance per unit volume is the substance's density.
D = m/v.
Ok thanks wkwksnmenenenenenenwnwnnwnwnwnw
Boiling-point is the point of a pure liquid matter starts to evaporate and change into gaseous phase. It is where the set of conditions such as the pressure and temperature enough to do so. Boiling-point elevation, on the other hand, is the phenomenon of which the boiling point of a pure liquid matter is elevated because of the dissolved substances. A great example would be the boiling point of a distilled water (pure water) which is lesser than the boiling point of a sea water because of the dissolved salts. A pure water boils at 100°C at atmospheric pressure while a salt water boils at higher temperature than 100°C at the same pressure. Thus, the answer is D.