<span>When water freezes, the molecules move farther apart. </span>
Answer:
The formula of the original halide is SrCl₂.
Explanation:
- The balanced equation of this reaction is:
SrX₂ + H₂SO₄ → SrSO₄ + 2 HX, where X is the halide.
- From the equation stichiometry, 1.0 mole of strontium halide will result in 1.0 mole of SrSO₄.
- The number of moles of SrSO₄ <em>(n = mass/molar mass) </em>= (0.755 g) / (183.68 g/mole) = 4.11 x 10⁻³ mole.
- The number of moles of SrX are 4.11 x 10⁻³ moles from the stichiometry of the balanced equation.
- n = mass / molar mass, n = 4.11 x 10⁻³ moles and mass = 0.652 g.
- The molar mass of SrX₂ = mass / n = (0.652) / (4.11 x 10⁻³ moles) = 158.62 g/mole.
- The molar mass of SrX₂ (158.62 g/mole) = Atomic mass of Sr (87.62 g/mole) + (2 x Atomic mass of halide X).
- The atomic mass of halide X = (158.62 g/mole) - (87.62 g/mole) / 2 = 71 / 2 g/mole = 35.5 g/mole.
- This is the atomic mass of Cl.
- <em>So, the formula of the original halide is SrCl₂</em>.
Answer:
CO32-(aq) + 2H+(aq) → CO2(g) + H2O(l)
Explanation:
According to this question, sodium carbonate reacts with sulfuric acid to form aqueous sodium sulfate, carbon dioxide and water. The balanced chemical equation is as follows:
Na2CO3(aq) + H2SO4(aq) → Na2SO4(aq) + CO2(g) + H2O(l)
- Next, split compounds that are aqueous into ions.
2Na+(aq) + CO32-(aq) + 2H+(aq) + SO42-(aq) → 2Na+(aq) + SO42-(aq) + CO2(g) + H2O(l)
- Next, we cancel out the spectator ions, which are ions that remain the same in the reactants and products side of a chemical reaction. The spectator ions in this equation are 2Na+(aq) and SO42-(aq).
CO32-(aq) + 2H+(aq) → CO2(g) + H2O(l)
- Hence, the balanced ionic equation is as follows:
CO32-(aq) + 2H+(aq) → CO2(g) + H2O(l)