Answer: 1436 mL
Explanation: 4/3 • 3.14 • 7^3 <— calculate
The correct option is B.
Isotopes refers to those chemical compounds which have the same number of protons and electrons but different number of neutrons, so they end up having different mass numbers. The diagram given above is that of beryllium, which has atomic number 4 and it has 2 electrons in its outermost shell. It has four protons [same as the number of electrons] and 5 neutrons. Beryllium 10, which is its isotope has four electrons, four protons and 6 neutrons. To get the number of neutron, remove the number of electrons from the number given in the option, that is, 10 - 4 = 6.
<h3>
1.</h3>
C) The volume of the gas is proportional to the number of moles of gas particles.
The Avogadro's law applies to ideal gases with constant pressure and temperature. By that law, the volume of an ideal gas is proportional to the number of moles of particles in that gas.
<h3>2.</h3>
B) The gas now occupies less volume, and the piston will move downward.
Boyle's Law applies to ideal gases with a constant temperature. The volume of an ideal gas is inversely related to its pressure. A high pressure drives gas particles together, such that they occupy less volume. The gas trapped inside the piston has a smaller volume. As a result, the the piston will move downward.
Alternatively, consider the forces acting on the piston. Both the atmosphere and gravity are dragging the piston down. In order for it to stay in place, the gas below it must exert a pressure to balance the two forces. Now the pressure from outside has increased. The gas inside needs to increase its pressure. It needs a smaller volume to create that extra pressure. As a result, its volume will decrease, and the piston will move downwards.
Once a chemical bond is formed, the atoms are rearranged to form a stronger bond, affecting the hardness, malleability, etc. The stronger the bond, the easier a substance will break, or, if its a liquid, it will resist seperation.