The third launch ( with 300 N force) had the greatest acceleration of the tennis ball
<h3>Further explanation </h3>
Newton's 2nd law explains that the acceleration produced by the resultant force on an object is proportional and in line with the resultant force and inversely proportional to the mass of the object
∑F = m. a

F = force, N
m = mass = kg
a = acceleration due to gravity, m / s²
From the above equation it has been shown that the force acting on the object is directly proportional to its acceleration, so <em>the greater the force exerted on the object, the greater the acceleration of the object produced.</em>
Answer:
Explanation: The strengths of the inter molecular forces varies as follows -

The normal boiling point of CSe2 is 125°C and that of CS2 is 116°C, which explains the trend that as we move down the group, the boiling point of e compound increases as the size increases.
This usually happens because larger and heavier atoms have a tendency to exhibit greater inter molecular strengths due to the increase in size . As the size increases, the valence shell electrons move far away from the nucleus, thus has a greater tendency to attract the temporary dipoles.
And larger the inter molecular forces, more tightly the electrons will be held to each other and thus more thermal energy would be required to break the bonds between them.
Answer: D
Explanation:
Chlorine is in group 7 or (VII) in Roman numerals, which means it has 7 balance electrons. It only needs one electron to become stable, hence it is next to the noble gases
We will assume that the solvent is water. So, if we have 100 grams of the solution, 19 grams will be sodium hydroxide, while the remaining 81 grams will be water.
The molar weight of sodium hydroxide, NaOH, is 40. The molar weight of water is 18. Finding the moles of each:
NaOH:
19 / 40 = 0.475
Water:
81 / 18 = 4.5
Total moles present:
4.5 + 0.475 = 4.975 moles
The mole fraction of NaOH is:
0.475 / 4.975 = 0.0955
The mole fraction of NaOH is 0.0955