Endothermic reaction : A reaction in which the system absorb energy, usually in the form of heat
the one that is an endothermic reaction is : D. Thawing ice
hope this helps
Answer: No, a<span>t high pressures, volume of a real gas does not compare with the volume of an ideal gas under the same conditions.
Reason:
For an ideal gas, there should not be any intermolecular forces of interaction. However, for real gases there are intermolecular forces of interaction like dipole-dipole and dipole-induced dipole. Further, at high pressures, molecules are close by. Hence, extend of these intermolecular forces is expected to be high. This results in decreases in volume of real gas. Thus, </span>volume of a real gas does not compare with the volume of an ideal gas under the same conditions.
The Big Bang probably occurred.
~30,000 B.C. North America Asian hunter-gatherers had crossed over the frozen Bering Strait to become first humans in North America.
~10,000 B.C. South America Those who crossed over on Bering Strait into North America had traveled as far south as Argentina by this point.
~6,000 B.C. Europe End of land bridge between Britain and continental Europe. Britain becomes an island.
~4,500 B.C. Brittany (France) The megalithic structures of Carnac were built.
~3,500 B.C. Wales Pentre Ifan is built.
~3,200 B.C. Ireland The Newgrange tomb is built.
Answer:
A = 2A + 3B → 5C
Explanation:
The two molecule of A and three molecules of B will react to form the five molecules of C.
2A + 3B → 5C
Other options are incorrect because,
B = A₂ + B₃ → C₅
in this reaction one molecule of A₂ and one molecule of B₃ combine to form one molecule of C₅.
C = 2A + 5B → 3C
in this reaction two molecules of A and five molecules of B combine to form three molecule of C.
D = A₂ + B₃ → C₃
in this reaction one molecule of A₂ and one molecule of B₃ combine to from one molecule of C₃.
Answer:
Option B. 4 moles of the gaseous product
Explanation:
Data obtained from the question include:
Initial volume (V1) = V
Initial number of mole (n1) = 2 moles
Final volume (V2) = 2V
Final number of mole (n2) =..?
Applying the Avogadro's law equation, we can obtain the number of mole of the gaseous product as follow:
V1/n1 = V2/n2
V/2 = 2V/n2
Cross multiply
V x n2 = 2 x 2V
Divide both side by V
n2 = (2 x 2V)/V
n2 = 2 x 2
n2 = 4 moles
Therefore, 4 moles of the gaseous product were produced.