Explanation:
answer is that i think???
<span>A. The magnetic force increases.
F is inversely proportional to r</span>²<span>
Hope this helps!</span>
Answer:
The value of the electric field is 
Explanation:
We know that the electric field inside a solid cylinder at a distance
from the centre is given by

Let's consider the cross-section of the cylinder as shown in the figure. Let `O' be the centre of the long solid insulating cylinder having radius 'R'. Also consider that
be the cetre of the hole of radius 'a' situated at a distance 'b' from 'O'. Given, the volume charge density of the material is 'r'. So, the volume charge density inside the hole will be '-r'. Let's consider 'P' be any arbitrary point inside the hole situated at a distance 's' from
.
So, the electric field '
' due to the long cylinder at point 'P' is given by

and the electric field '
'due to the hole at point 'P' is given by

So the net electric field (
) inside the hole is given by

Answer:
a sense of industry
Explanation:
I just had this question and got it right
Answer:
k = 0.5 MN/m
Explanation:
Mass of the railcar, m = 5000 kg
Speed of the rail car, v = 1 m/s
The Kinetic energy(KE) of the railcar is given by the equation:
KE = 0.5 mv²
KE = 0.5 * 5000 * 1²
KE = 2500 J
The spring's compression, x = 0.1 m
The potential energy(PE) stored in the spring is given by the equation:
PE = 0.5kx²
PE = 0.5 * k * 0.1²
PE = 0.005k
According to the principle of energy conservation, Kinetic energy of the railcar equals the potential energy stored in the spring
KE = PE
2500 = 0.005k
k = 2500/0.005
k = 500000 N/m
k = 0.5 MN/m