Answer:
The photon has a wavelength of
Explanation:
The speed of a wave can be defined as:
(1)
Where v is the speed,
is the frequency and
is the wavelength.
Equation 1 can be expressed in the following way for the case of an electromagnetic wave:
(2)
Where c is the speed of light.
Therefore, 
can be isolated from equation 2 to get the wavelength of the photon.
(3)

Hence, the photon has a wavelength of
<em>Summary: </em>
Photons are the particles that constitutes light.
since both components, length and time, are measurable
<span>since Rate = length ÷ time </span>
<span>∴ rate is also measurable and ∴ quantitative.
</span>
Answer:
1.27 m
Explanation:
Distance = 192 m
number of rotations = 48
Distance traveled in one rotation = 2 x π x r
Where, r be the radius of wheel.
so, distance traveled in 48 rotations = 48 x 2 x 3.14 x r
It is equal to the distance traveled.
192 = 48 x 2 x 3.14 x r
r = 0.637 m
diameter of wheel = 2 x radius of wheel = 2 x 0.637 = 1.27 m
There is no right or wrong answer, your teacher wants you to support your own answer with points. As long as the reasons make logical sense you are fine.
I think they both have valid points. Their replies are both true, but from a buyer's perspective who would you purchase services from? You would get different answers depending on who you ask.
If you choose to go old school, obviously you get an actual photo that can be stored physically. This means it is a memory that can be preserved, and it might feel more nostalgic being able to touch the photo.
On the other hand, a digitally stored photo can be altered (photoshop), but it is forever as long as the internet still exists. A physical photo would fade with time, which doesn't happen with a digital photo.
It is definitely easier to argue that digital photography has more advantages (they do, it is why nobody uses film anymore)
Points you can consider:
Can be transferred to the other side of the world instantly
Ability to make copies and print as many photos as you want
Can be stored on cloud/devices and be like that forever
Compare them with film photography to give a more solid response.
Answer:
vb = 22.13 m/s
Explanation:
ma = 124 kg
mb = 13 kg
vi = 2.10 m/s
According to the property of conservation of momentum, and considering that, initially, both the astronaut and the bag moved together at 2.10 m/s:

The minimum final velocity of the bag, vb, the will keep the astronaut from drifting away forever occurs when va = 0:

The minimum final velocity of the bag is 22.13 m/s.