Answer:
λ = 5.85 x 10⁻⁷ m = 585 nm
f = 5.13 x 10¹⁴ Hz
Explanation:
We will use Young's Double Slit Experiment's Formula here:

where,
λ = wavelength = ?
Y = Fringe Spacing = 6.5 cm = 0.065 m
d = slit separation = 0.048 mm = 4.8 x 10⁻⁵ m
L = screen distance = 5 m
Therefore,

<u>λ = 5.85 x 10⁻⁷ m = 585 nm</u>
Now, the frequency can be given as:

where,
f = frequency = ?
c = speed of light = 3 x 10⁸ m/s
Therefore,

<u>f = 5.13 x 10¹⁴ Hz</u>
The impact speed will be
v^2 = 2*9.8*1.3
v^2 = 25.48
v= 5.04 m/s
Answer:
if your bedroom is empty yes but if not most likely no
Explanation:
Why Cannot we hear an echo in a small room?
They can't hear an echo in small room because in it the sound can't be reflected back. For an echo of a sound to be heard,the minimum distance between the source of sound and the walls of the room should be 17.2 m.Obviously,in a small room echoes cannot be heard.
Answer: A cold front occurs when a cold air mass advances into a region occupied by a warm air mass. If the boundary between the cold and warm air masses doesn't move, it is called a stationary front.
Explanation: Two types of occluded front exist: the warm-type and the cold-type. They’re distinguished by the relative temperatures of the air mass ahead of the occlusion – in other words, the air mass ahead of the original warm front – and the air mass behind the cold front. If the air behind the cold front is colder than the air ahead of the occlusion, it shoves beneath that air (because it’s denser) to form a cold-type occluded front. If the air behind the cold front is warmer than the air ahead, it rides over it to form a warm-type occluded front – which appears to be the more common case. In either situation, the lighter warm air representing the air mass originally between the warm and cold fronts sits above the boundary between the two cooler air masses.
Hope this helps!!