1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Setler [38]
3 years ago
13

Describe the motion of an object as it accelerates. IN YOUR OWN WORD!! ASAP

Physics
1 answer:
Pachacha [2.7K]3 years ago
5 0

Answer:

The aceleration of an object is in the direction of the net force. If you push or pull an object in a particular direction, it accelerates in that direction. The aceleration has a magnitude directly proportional to the magnitude of the net force.

Explanation:

Hope this helps Plz mark brainliest

You might be interested in
A major contemporary learning view of personality which holds that personality traits result from a
DIA [1.3K]

Answer:

21

Explanation:

21 is x because 211211 1 1 1 1  1aghh

3 0
3 years ago
Read 2 more answers
A 7600 kg rocket blasts off vertically from the launch pad with a constant upward acceleration of 2.35 m/s2 and feels no appreci
ollegr [7]

Answer:

a) The rocket reaches a maximum height of 737.577 meters.

b) The rocket will come crashing down approximately 17.655 seconds after engine failure.

Explanation:

a) Let suppose that rocket accelerates uniformly in the two stages. First, rocket is accelerates due to engine and second, it is decelerated by gravity.

1st Stage - Engine

Given that initial velocity, acceleration and travelled distance are known, we determine final velocity (v), measured in meters per second, by using this kinematic equation:

v = \sqrt{v_{o}^{2} +2\cdot a\cdot \Delta s} (1)

Where:

a - Acceleration, measured in meters per square second.

\Delta s - Travelled distance, measured in meters.

v_{o} - Initial velocity, measured in meters per second.

If we know that v_{o} = 0\,\frac{m}{s}, a = 2.35\,\frac{m}{s^{2}} and \Delta s = 595\,m, the final velocity of the rocket is:

v = \sqrt{\left(0\,\frac{m}{s} \right)^{2}+2\cdot \left(2.35\,\frac{m}{s^{2}} \right)\cdot (595\,m)}

v\approx 52.882\,\frac{m}{s}

The time associated with this launch (t), measured in seconds, is:

t = \frac{v-v_{o}}{a}

t = \frac{52.882\,\frac{m}{s}-0\,\frac{m}{s}}{2.35\,\frac{m}{s} }

t = 22.503\,s

2nd Stage - Gravity

The rocket reaches its maximum height when final velocity is zero:

v^{2} = v_{o}^{2} + 2\cdot a\cdot (s-s_{o}) (2)

Where:

v_{o} - Initial speed, measured in meters per second.

v - Final speed, measured in meters per second.

a - Gravitational acceleration, measured in meters per square second.

s_{o} - Initial height, measured in meters.

s - Final height, measured in meters.

If we know that v_{o} = 52.882\,\frac{m}{s}, v = 0\,\frac{m}{s}, a = -9.807\,\frac{m}{s^{2}} and s_{o} = 595\,m, then the maximum height reached by the rocket is:

v^{2} -v_{o}^{2} = 2\cdot a\cdot (s-s_{o})

s-s_{o} = \frac{v^{2}-v_{o}^{2}}{2\cdot a}

s = s_{o} + \frac{v^{2}-v_{o}^{2}}{2\cdot a}

s = 595\,m + \frac{\left(0\,\frac{m}{s} \right)^{2}-\left(52.882\,\frac{m}{s} \right)^{2}}{2\cdot \left(-9.807\,\frac{m}{s^{2}} \right)}

s = 737.577\,m

The rocket reaches a maximum height of 737.577 meters.

b) The time needed for the rocket to crash down to the launch pad is determined by the following kinematic equation:

s = s_{o} + v_{o}\cdot t +\frac{1}{2}\cdot a \cdot t^{2} (2)

Where:

s_{o} - Initial height, measured in meters.

s - Final height, measured in meters.

v_{o} - Initial speed, measured in meters per second.

a - Gravitational acceleration, measured in meters per square second.

t - Time, measured in seconds.

If we know that s_{o} = 595\,m, v_{o} = 52.882\,\frac{m}{s}, s = 0\,m and a = -9.807\,\frac{m}{s^{2}}, then the time needed by the rocket is:

0\,m = 595\,m + \left(52.882\,\frac{m}{s} \right)\cdot t + \frac{1}{2}\cdot \left(-9.807\,\frac{m}{s^{2}} \right)\cdot t^{2}

-4.904\cdot t^{2}+52.882\cdot t +595 = 0

Then, we solve this polynomial by Quadratic Formula:

t_{1}\approx 17.655\,s, t_{2} \approx -6.872\,s

Only the first root is solution that is physically reasonable. Hence, the rocket will come crashing down approximately 17.655 seconds after engine failure.

7 0
2 years ago
A 180-ohm resistor has 0.10 A of current in it. what is the potential difference across the resistor
Firlakuza [10]
We know V=IR (Ohm's law).

We are given R=180Ω and I=0.1A, then V=(0.1AΩ)(180Ω). Therefore

V=18V
5 0
3 years ago
Which of the following frictionless ramps (A, B, or C) will give the ball the greatest speed at the bottom of the ramp? Explain.
masya89 [10]
The velocity would be the same for all ramps.
5 0
3 years ago
Read 2 more answers
An elevator (mass 4100 kg) is to be designed so that the maximum acceleration is 0.0400g. what is the maximum force the motor sh
melomori [17]

Answer:

The maximum force on the supporting cable is 80688 N.

The minimum force on the supporting cable is -164 N.

Explanation:

For maximum force movement of elevator is in upward direction. Thus, equation of motion is given by,

ma = T - mg

where m is the mass of elevator

a is acceleration of elevator

g is acceleration due to gravity

T is the maximum tension in the supporting cable

T = ma + mg

T = m (a + g)

T = 4100 ( 0.04g + 9.8)

T = 80688 N

This is the maximum force on the supporting cable.

For minimum force movement of elevator is in downward direction. Thus, equation of motion is given by,

ma = T - mg

where m is the mass of elevator

a= -0.04g is acceleration of elevator because elevator is moving downward

g is acceleration due to gravity

T is the minimum tension in the supporting cable

T = ma + mg

T = m (a + g)

T = 4100 ( 9.8 - 0.04g)

T = -164 N

This is the minimum force on the supporting cable.


7 0
3 years ago
Other questions:
  • Everything we know about stars comes from studying their _____.
    15·2 answers
  • Please help me
    9·1 answer
  • The fact that current is uniform anywhere in a series circuit is an application of the principle of:
    10·2 answers
  • What are three common forms of work in science
    6·2 answers
  • The hardest known natural material is _____.
    12·2 answers
  • The cars salemens tells you that the car can go from a stopped position to 60 miles per hour in 6 seconds he is giving you the c
    14·1 answer
  • A cylinder with a movable piston contains a sample of ideal gas. A temperature probe and a pressure probe are inserted into the
    14·1 answer
  • What is another word for a change in velocity/change in time
    10·1 answer
  • Which substance is a heterogeneous mixture?
    9·1 answer
  • Which of these events is an example of resonance?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!