Answer:
3.25 × 10^7 m/s
Explanation:
Assuming the electrons start from rest, their final kinetic energy is equal to the electric potential energy lost while moving through the potential difference (ΔV)
Ek = 1/2 mv2 = qΔV .................. 1
Given that V is the electron speed in m/s
Charge of electron = 1.60217662 × 10-19 coulombs
Mass of electron = 9.109×10−31 kilograms
ΔV = 3.0kV = 3000V
Make V the subject of the formula in eqaution 1
V = sqr root 2qΔV/m
V = 2 × 1.60217662 × 10-19 × 3000 / 9.109×10−31
V = 3.25 × 10^7 m/s
consider the motion in x-direction
= initial velocity in x-direction = ?
X = horizontal distance traveled = 100 m
= acceleration along x-direction = 0 m/s²
t = time of travel = 4.60 sec
Using the equation
X = t + (0.5) t²
100 = (4.60)
= 21.7 m/s
consider the motion along y-direction
= initial velocity in y-direction = ?
Y = vertical displacement = 0 m
= acceleration along x-direction = - 9.8 m/s²
t = time of travel = 4.60 sec
Using the equation
Y = t + (0.5) t²
0 = (4.60) + (0.5) (- 9.8) (4.60)²
= 22.54 m/s
initial velocity is given as
= sqrt(()² + ()²)
= sqrt((21.7)² + (22.54)²) = 31.3 m/s
direction: θ = tan⁻¹(22.54/21.7) = 46.12 deg
Answer:
wavelength = 24 m
Period = 10 s
f = 0.1 Hz
Amplitude = 4 m
Explanation:
Wavelength:
Since the boats are at crest and trough, respectively at the same time. Hence, the horizontal distance between them is the wavelength of the wave:
<u>wavelength = 24 m</u>
Period:
The period is given as:
<u>Period = 10 s</u>
<u></u>
Frequency:
The frequency is given as:
<u>f = 0.1 Hz</u>
<u></u>
Amplitude:
Amplitude will be half the distance between extreme points, that is, crest and trough:
Amplitude = 8 m/2
<u>Amplitude = 4 m</u>
In an exothermic reaction, there is a transfer of energy to the surroundings in the form of heat energy. The surroundings of the reaction will experience an increase in temperature. Many types of chemical reactions are exothermic, including combustion reactions, respiration & neutralization reactions of bases & acids.
Because the temperature of the place its contained in is constantly changing, for example, if you put a room temperature item in the fridge it will become cold, or whatever the temperature you set your fridge to.