The answer would be Gravity.
Gravity is pulling the weight down, which is pulling the car up the ramp.
Answer:
7.328m/s
Explanation:
Given parameters:
height of table = 0.68m
final velocity of the ball = 6m/s
Unknown:
Initial velocity of ball = ?
Solution:
To solve this problem, we are going to employ the appropriate motion equation.
We must understand that this fall occurs in the presence of gravity;
V = U + 2gH
Where;
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity
H is the height of the pool table
Since U is the unknown, let us make it the subject of the expression;
U = V - 2gH
U = 6 - (2 x 9.8 x 0.68) = 7.328m/s(deceleration)
I don’t know, which statement ahh I see white screen lol
Solution :
a). B at the center :

Here, one of the current is in the clockwise direction and therefore, the other current must be in the clockwise direction in order to cancel out the effect of the magnetic field that is produced by the other.
Therefore, the answer is ANTICLOCKWISE or COUNTERCLOCKWISE
b). Also, the sum of the fields must be zero.
Therefore,

So,


A
Therefore, the current in the outer wire is 24.38 ampere.
First of all, looks like your teacher is indeed pretty horrible. Secondly, the constraints to consider would be proper weight distribution, methods to minimize excessive motion of the building structure, and quantities such as volume and density, which would help in determining the optimal structure. Keeping the frequency of oscillation for a building low in case of an earthquake or natural disaster would also be a priority.