Answer:
h = 5.09 m
Explanation:
Applying the Law of conservation of energy to this situation, we can write:

where,
h = height of the hill = ?
v = speed of cart at the end = 10 m/s
g = acceleration due to gravity = 9.81 m/s²
Therefore,

<u>h = 5.09 m</u>
From Newton's second law of motion, it is identified that the net force applied to the object with mass m, will make it move with an acceleration of a. This can be mathematically translated as,
F = m x a
To solve for the mass of the sled, we derive the equation above such that,
m = F / a
Substituting,
m = (18 N) / (0.39 m/s²)
m = 46.15 kg
Then, we add to the calculated mass the mass of the extra material.
total mass = 46.15kg + 4.5 kg
total mass = 50.65 kg
We solve for the normal force of the surface to the object by calculating its weight.
F₂ = (50.65 kg)(9.8 m/s²)
F₂ = 496.41 N
The force that would allow barely a movement for the object is equal to the product of the normal force and the coefficient of kinetic friction.
F = (F₂)(c)
c = F/F₂
Substituting,
c = 18 N/496.41 N
c = 0.0362
<em>ANSWER: c = 0.0362</em>
Answer:
Yes, the heat that flows into the system is used to change the internal energy of the gas and becomes work done by the piston.
Explanation:
First law of thermodynamics known as Law of Conservation of Energy, states that energy can neither be created nor destroyed; energy can only be transferred or changed from one form to another.
The first law of thermodynamics states that the change in internal energy of a system equals the net heat transfer into the system minus the net work done by the system. In equation form, the first law of thermodynamics.
This is the first law of thermodynamics
ΔE= Q− W
ΔE= change internal energy of the system.
Q= heat transfer into the system
And
W= work done by the system.
Rewriting the equation
ΔE= Q− W
Q=ΔE +W
Show that the heat flowing l into the system is transferred to the internal energy of the system and the work done by the piston
So the third option is correct