The first law of thermodynamics can be written as

where

is the variation of internal energy of the system

is the amount of heat absorbed by the system

is the work done by the system on the surrounding.
Using this form, the sign convention for Q and W becomes:
Q > 0 --> heat absorbed by the system (because it increases the internal energy)
Q < 0 --> heat released by the system (because it decreases the internal energy)
W > 0 --> work done by the system (for instance, an expansion: when the system expands, it does work on the surrounding, and so the internal energy decreases, this is why there is a negative sign in the formula Q-W)
W < 0 --> work done by the surrounding on the system (for instance, a compression: when the system is compressed, the surrounding is doing work on the system, and so the internal energy of the system increases)
Answer:
r = 4.21 10⁷ m
Explanation:
Kepler's third law It is an application of Newton's second law where the forces of the gravitational force, obtaining
T² = (
) r³ (1)
in this case the period of the season is
T₁ = 93 min (60 s / 1 min) = 5580 s
r₁ = 410 + 6370 = 6780 km
r₁ = 6.780 10⁶ m
for the satellite
T₂ = 24 h (3600 s / 1h) = 86 400 s
if we substitute in equation 1
T² = K r³
K = T₁²/r₁³
K =
K = 9.99 10⁻¹⁴ s² / m³
we can replace the satellite values
r³ = T² / K
r³ = 86400² / 9.99 10⁻¹⁴
r = ∛(7.4724 10²²)
r = 4.21 10⁷ m
this distance is from the center of the earth
Given:
u(initial velocity)=0
v(final velocity)= 10 m/s
t= 4 sec
Now we know that
v= u + at
Where v is the final velocity
u is the initial velocity
a is the acceleration measured in m/s^2
t is the time measured in sec
10=0+ax4
a=10/4
a=2.5 m/s^2
1,4,6
a bow is drawn back
a gun is loaded w/ a dart
a bungee cord is stretched