Answer:
The puck moves a vertical height of 2.6 cm before stopping
Explanation:
As the puck is accelerated by the spring, the kinetic energy of the puck equals the elastic potential energy of the spring.
So, 1/2mv² = 1/2kx² where m = mass of puck = 39.2 g = 0.0392 g, v = velocity of puck, k = spring constant = 59 N/m and x = compression of spring = 1.3 cm = 0.013 cm.
Now, since the puck has an initial velocity, v before it slides up the inclined surface, its loss in kinetic energy equals its gain in potential energy before it stops. So
1/2mv² = mgh where h = vertical height puck moves and g = acceleration due to gravity = 9.8 m/s².
Substituting the kinetic energy of the puck for the potential energy of the spring, we have
1/2kx² = mgh
h = kx²/2mg
= 59 N/m × (0.013 m)²/(0.0392 kg × 9.8 m/s²)
= 0.009971 Nm/0.38416 N
= 0.0259 m
= 2.59 cm
≅ 2.6 cm
So the puck moves a vertical height of 2.6 cm before stopping
Answer:
B. 22,22,23,23,22,22,23
Explanation:
The standard deviation is a measure of dispersion or variability of a data set. In order to determine the data set that has the smallest standard deviation, we shall investigate on the ranges of the data sets given. The range of a data set is simply the difference between the maximum and minimum values in a data set. A data set that has a smaller range also has a smaller standard deviation.
From the alternatives given, the data set given by alternative B has the smallest range and consequently the smallest standard deviation.
The maximum value is 23 while the minimum is 22. The range is 1.
Answer:
B) 3.6x 10_6 N/C or D)2.8 x105 N/C
False; the three major scales used to measure earthquakes are the Mercalli Scale, the Richter Scale, and the Magnitude Scale. I hope this helps!
The answer is B
second law