Answer:
(a) 0 (b) 
Explanation:
Given that,
Mass of a supertanker, 
The engine of a generate a forward thrust of, 
(a) As the supertanker is moving with a constant velocity. We need to find the magnitude of the resistive force exerted on the tanker by the water. It is given by :
F = ma, a is the acceleration
For constant velocity, a = 0
So, F = 0
(b) The magnitude of the upward buoyant force exerted on the tanker by the water is equal to the weight of the ship.
F = mg

Hence, this is the required solution.
Answer:
a) the frequency of the wave is 0.2 Hz
b) the speed of the wave 4 m/s
Explanation:
Given that;
time period = to complete one cycle t = 5 sec
frequency f = 1/t
frequency f = 1 / 5sec
f = 0.2 Hz
Therefore the frequency of the wave is 0.2 Hz
b)
speed of wave V = λf
given that our wavelength is 20.0 m
we substitute
speed of wave V = 20.0 × 0.2
speed of wave V = 4 m/s
Therefore, the speed of the wave 4 m/s
Answer:
It's energy will double.
Explanation:
This is because energy, E, is related to frequency, f, by:
E = hf
Where h = Planck's constant
So, double frequency will be 2f
=> E(2f) = 2hf = 2E.
Hence, energy is doubled.
Answer:
A. Gravitational force
C. Their charges
Explanation:
As we'll discuss in this lesson, he found that the force between charged particles was dependent on only two factors: the distance between the particles and the amount of electric charge that they carried.
Hope it help you
have a good day :)
Answer:
Between -35 degrees C and 355 degrees C
Explanation:
At any temperature between, but not including the freezing and boiling points, the substance would be in its liquid state.