Answer:
E = 1.2443*10⁶ N/C
Explanation:
R = 41.6 cm = 0.416 m
Q₁ = 8.55 μC = 8.55*10⁻⁶C
Q₀ = 4.43 μC = 4.43*10⁻⁶C
r = 17.9 cm = 0.179 m
K = 9*10⁹ N*m²/C²
Since r < R we can apply Gauss's Law as follows
E = K*Q₀ / r²
⇒ E = (9*10⁹ N*m²/C²)*(4.43*10⁻⁶C) / (0.179 m)²
⇒ E = 1.2443*10⁶ N/C
Humid air has higher pressure because of the heaviness of water humid air is lighter so it has lower pressure.
Answer:
Tree sap flows over the leaf and preserves it.
Explanation:
Amber would preserve the image.
• Before the balloon was placed inside the hot water, the pressure was the same inside and outside the balloon. The hot water raised the kinetic energy of the air molecules inside the balloon, expanding the balloon, through thermal expansion.
• (1) the pressure of air inside the balloon increased, (2) the volume of the inside of the balloon increased as well, and (3) the temperature of the balloon increased. Note that pressure and volume are inversely proportional, and pressure and temperature are directly proportional. Therefore as the temperature increases, the pressure inside will increase, causing an increase in the volume. At a certain point though the volume will increase too much as to cause a significant decrease in pressure.
• The air molecules will gain kinetic energy, hence (1) increasing the molecules's speed, and (2) heating the air molecules.
Answer:
<h3>The answer is 2.16 moles</h3>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>2.16 moles</h3>
Hope this helps you