Rubber it's not a conductor
Answer:
I'm thinking Henri's wave and Geri's wave have the same amplitude and energy, but i'm not %100 sure
Explanation:
Answer:
18.76atm
Explanation:
Using the formula V1P1/T1 = V2P2/T2, from combined gas law. Volume is constant since we have not been given. Therefore the formula comes to be; P1/T1 = P2/T1
To get P2 = T2(P1/T1)
Where P2 is final pressure
P2 = 239K ( 23atm/293K)
=18.76atm
Answer:
<h2>Density = 0.46 g/mL</h2>
Explanation:
Density of a substance can be found by using the formula
<h3>

</h3>
From the question
mass = 5.52 g
volume = 12 mL
Substitute the values into the above formula and solve for the Density
That's
<h3>

</h3>
We have the final answer as
<h3>Density = 0.46 g/mL</h3>
Hope this helps you
Answer:
The equilibrium expression is:
CoC2O4(s)⇌Co2+(aq)+C2O2−4(aq)
For this reaction:
Ksp = [Co2+][C2O2−4]=1.96×10−8
Explanation:
Batteries will not clot if cobalt ions are removed from its cells. Some blood collection tubes contain salts of the oxalate ion,
C2O2−4
, for this purpose. At sufficiently high concentrations, the calcium
and oxalate ions form solid, CoC2O4·H2O (which also contains water bound in the solid). The concentration of Co2+ in a sample of blood serum is 2.2 × 10–3M. What concentration of
C2O2−4
ion must be established before CoC2O4·H2O begins to precipitate.
CoC2O4 does not appear in this expression because it is a solid. Water does not appear because it is the solvent.
Solid CoC2O4 does not begin to form until Q equals Ksp. Because we know Ksp and [Co2+], we can solve for the concentration of
C2O2−4
that is necessary to produce the first trace of solid: