Answer:
The points 2 and 4 should be connected.
Explanation:
To complete the circuit, we need to connect the two points which when connected, encompass the battery and the bulb in the circuit. The points 2 and 4 do the job, since they connect the terminal of the battery and the terminal of the bulb, and thus complete the circuit.
Therefore, the choice C is correct.
Explanation:
The pressure exerted by a column of liquid of height h and density ρ is given by the hydrostatic pressure equation p = ρgh, where g is the gravitational acceleration
Answer:
715 N
Explanation:
Since the system is moving at a constant velocity, the net force must be 0. The tension on the road is equal and opposite direction with the kinetic friction force created by the road and the stuntman.
Let g = 9.8 m/s2
Gravity and equalized normal force is:
N = P = mg = 107*9.8 = 1048.6 N
Kinetic friction force and equalized tension force on the rope is

The formula is=1/2(m x v^2)
so = 1/2*(0.05)*(310)^2
ans is =2402.5 joules
Answer:
<h3>The answer is 40 N</h3>
Explanation:
The force acting on an object can be found by using the formula
<h3>force = mass × acceleration</h3>
From the question
mass = 4 kg
acceleration = 10 m/s²
So we have
force = 4 × 10
We have the final answer as
<h3>40 N</h3>
Hope this helps you