Answer:
d = 69 .57 meter
Explanation:
First case
Speed of car ( v ) = 20.5 mi/h = 9.164 M/S
distance ( d ) = 11.6 meter ( m = mass of the car )
Work done = 0.5 m v² = 0.5 * 9.164² * m J = 41.99 m J
Force = ( workdone /distance ) = ( 41.99 m / 11.6 ) = 3.619 m N
Second case
v = 50.2 mi/h = 22.44135 m/s
d = ?
Work done = 0.5 * 22.44² * m J = 251.7768 * m J
Since the braking force remains the same .
3.619 m = ( 251.7768 m / d )
d = 69 .57 meter
Electron configurations:
Ge: [Ar] 3d10 4s2 4p2 => 6 electrons in the outer shell
Br: [Ar] 3d10 4s2 4p5 => 7 electrons in the outer shell
Kr: [Ar] 3d10 4s2 4p6 => 8 electrons in the outer shell
The electron affinity or propension to attract electrons is given by the electronic configuration. Remember that the most stable configuration is that were the last shell is full, i.e. it has 8 electrons.
The closer an atom is to reach the 8 electrons in the outer shell the bigger the electron affinity.
Of the three elements, Br needs only 1 electron to have 8 electrons in the outer shell, so it has the biggest electron affinity (the least negative).
Ge: needs 2 electrons to have 8 electrons in the outer shell, so it has a smaller (more negative) electron affinity than Br.
Kr, which is a noble gas, has 8 electrons and is not willing to attract more electrons at all, the it has the lowest (more negative) electron affinity of all three to the extension that really the ion is so unstable that it does not make sense to talk about a number for the electron affinity of this atom.
Answer:
1. To determine the average speed for the first day of the trip, the total distance traveled would have to be acquired and then how long it took to arrive at the final destination, only including the time that was actually traveled and not any time that was accumulated by any rest stops. Once you have this information, you have to divide the distance over time and you have the average speed (mph).
2. To determine the instantaneous speed, you would just have to look at the speedometer, which tells you at what speed the car is traveling at that exact moment.
Explanation:
I took physics 121 and got the same question. This is my answer that i used and my teacher said it was right.
The answer is c. Continuous direct
Answer:
measurement of force amplification