Answer:
4.62 N-s
Explanation:
recall that the formula for impulse is given by
Impulse = Force x change in time
in our case, we are given
Force = 14 N
change in time = 0.33s
Simply substituting the above into the equation for impulse, we get
Impulse = Force x change in time
Impulse = 14 x 0.33
= 4.62 N-s
A) d. 10T
When a charged particle moves at right angle to a uniform magnetic field, it experiences a force whose magnitude os given by

where q is the charge of the particle, v is the velocity, B is the strength of the magnetic field.
This force acts as a centripetal force, keeping the particle in a circular motion - so we can write

which can be rewritten as

The velocity can be rewritten as the ratio between the lenght of the circumference and the period of revolution (T):

So, we get:

We see that this the period of revolution is directly proportional to the mass of the particle: therefore, if the second particle is 10 times as massive, then its period will be 10 times longer.
B) 
The frequency of revolution of a particle in uniform circular motion is

where
f is the frequency
T is the period
We see that the frequency is inversely proportional to the period. Therefore, if the period of the more massive particle is 10 times that of the smaller particle:
T' = 10 T
Then its frequency of revolution will be:

Answer:
2.5m
Explanation:
Torque is defined as the rotational effect of a force on a body.
The torque T for the maximum shear stress is given as 0.1 Nm
Frictional torque is the torque caused by a frictional force
The frictional torque F is given as 0.04 Nm/m
The maximum length of the shaft is thus given as
L = T / F
= 0.1/0.04
L= 2.5 m