1) The metal which reduces the other compound is the one higher in the reactivity. So in this case it is
.
2) The substance which brings about reduction while itself getting oxidised (that is losing electrons) is called a reducing agent. Here, $\mathrm{Zn}$ is the reducing agent and reduces Cobalt Oxide to Cobalt while itself getting oxidised to Zinc oxide.
They are called isotopes.
Isotopes have the same number of electrons and protons in their unionized state. They differ in the number of neutrons. The first and simplest example is hydrogen.
The most common hydrogen has
1 proton
1 electron and
0 neutrons
It has 2 cousins
1 proton
1 electron
1 neutron
And
1 proton
1 electron
2 neutrons.
Most elements have some differences in the number of neutrons present in their nuclei. Cesium and Xenon have the most number of isotopes. Each has 36. You wonder how the atoms are held together.
Answer:
45.95 Jkg^-1°C^-1
Explanation:
as specific heat capacity = heat energy / mass × delta
temperature
=52500/10.2×112
=45.95 Jkg^-1°C^-1
Answer:
K = Ka/Kb
Explanation:
P(s) + (3/2) Cl₂(g) <-------> PCl₃(g) K = ?
P(s) + (5/2) Cl₂(g) <--------> PCl₅(g) Ka
PCl₃(g) + Cl₂(g) <---------> PCl₅(g) Kb
K = [PCl₃]/ ([P] [Cl₂]⁽³'²⁾)
Ka = [PCl₅]/ ([P] [Cl₂]⁽⁵'²⁾)
Kb = [PCl₅]/ ([PCl₃] [Cl₂])
Since [PCl₅] = [PCl₅]
From the Ka equation,
[PCl₅] = Ka ([P] [Cl₂]⁽⁵'²⁾)
From the Kb equation
[PCl₅] = Kb ([PCl₃] [Cl₂])
Equating them
Ka ([P] [Cl₂]⁽⁵'²⁾) = Kb ([PCl₃] [Cl₂])
(Ka/Kb) = ([PCl₃] [Cl₂]) / ([P] [Cl₂]⁽⁵'²⁾)
(Ka/Kb) = [PCl₃] / ([P] [Cl₂]⁽³'²⁾)
Comparing this with the equation for the overall equilibrium constant
K = Ka/Kb
Its C
a catalyst speeds up a reaction by offering the reaction an alternative reaction pathway with a lower activation energy
hope that helps