Answer:
Acceleration
Explanation:
The rate at which velocity changes with time is called Acceleration is a measure of how quickly the velocity is changing. If velocity does not change, there is no acceleration.
Molality is a measure of concentration that relates the moles of solute to the kilograms of solvent, it is described by the following equation:

We are given the molality(2.50m) and kilograms of solvent(0.500kg), so we solve for moles of solute from the equation:


To make a 2.50molal NaOH solution would be needed 1.25moles of solute
Answer: 1.25 moles
Answer:
The rate law for second order unimolecular irreversible reaction is
![\frac{1}{[A]} = k.t + \frac{1}{[A]_{0} }](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%20%3D%20k.t%20%2B%20%5Cfrac%7B1%7D%7B%5BA%5D_%7B0%7D%20%7D)
Explanation:
A second order unimolecular irreversible reaction is
2A → B
Thus the rate of the reaction is
![v = -\frac{1}{2}.\frac{d[A]}{dt} = k.[A]^{2}](https://tex.z-dn.net/?f=v%20%3D%20-%5Cfrac%7B1%7D%7B2%7D.%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%20%3D%20k.%5BA%5D%5E%7B2%7D)
rearranging the ecuation
![-\frac{1}{2}.\frac{k}{dt} = \frac{[A]^{2}}{d[A]}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B2%7D.%5Cfrac%7Bk%7D%7Bdt%7D%20%3D%20%5Cfrac%7B%5BA%5D%5E%7B2%7D%7D%7Bd%5BA%5D%7D)
Integrating between times 0 to <em>t </em>and between the concentrations of
to <em>[A].</em>
![\int\limits^0_t -\frac{1}{2}.\frac{k}{dt} =\int\limits^A_{0} _A\frac{[A]^{2}}{d[A]}](https://tex.z-dn.net/?f=%5Cint%5Climits%5E0_t%20-%5Cfrac%7B1%7D%7B2%7D.%5Cfrac%7Bk%7D%7Bdt%7D%20%3D%5Cint%5Climits%5EA_%7B0%7D%20_A%5Cfrac%7B%5BA%5D%5E%7B2%7D%7D%7Bd%5BA%5D%7D)
Solving the integral
![\frac{1}{[A]} = k.t + \frac{1}{[A]_{0} }](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%20%3D%20k.t%20%2B%20%5Cfrac%7B1%7D%7B%5BA%5D_%7B0%7D%20%7D)
Answer:
5 g
Explanation:
The heat required to vaporize ice is the sum of
i) Heat required to melt ice at 0°C
ii) Heat required to raise the temperature from 0°C to 100°C
iii) Heat required to vaporize water at 100°C
Thus;
H = nLfus + ncθ + nLvap
H= n(Lfus + cθ + Lvap)
Lfus = 6.01 kJ/mol
Lvap = 41 kJ/mol
c = 75.38
n =?
2100 = n(6.01 + 75.38(100) + 41)
n = 2100 KJ/7585.01 kJ/mol
n = 0.277 moles
Mass of water = number of moles * molar mass
Mass of water = 0.277 moles * 18 g/mol
Mass of water = 5 g