bromine
Explanation:
halogens are a group of elemnts simlar to eachother
flourine, chlorine, and bromine
Answer:
well, first off. the formula for carbon tetrachloride is CCl4
We need to find the molar mass of carbon tetrachloride
1(Mass of C) + 4(mass of chlorine)
1(12) + 4(35.5)
12 + 142
154 g/mol
Number of moles of CCl3 in 543.2g CCl3
n = given mass / molar mass
n = 543.2/153
n = 3.53 moles
always remember to brainly the questions you find helpful
<u> electrical energy to chemical energy</u>
Answer:
3.01 × 10²³ atoms Ne
General Formulas and Concepts:
<u>Atomic Structure</u>
- Reading a Periodic Tables
- Moles
<u>Stoichiometry</u>
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
<em>Identify</em>
[Given] 10.1 g Ne
[Solve] atoms Ne
<u>Step 2: Identify Conversions</u>
Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
[PT] Molar Mass of Ne: 20.18 g/mol\
<u>Step 3: Convert</u>
- [DA] Set up:
- [DA] Divide/Multiply [Cancel out units]:
<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
3.01398 × 10²³ atoms Ne ≈ 3.01 × 10²³ atoms Ne
Answer:
36.55kJ/mol
Explanation:
The heat of solution is the change in heat when the KNO3 dissolves in water:
KNO3(aq) → K+(aq) + NO3-(aq)
As the temperature decreases, the reaction is endothermic and the molar heat of solution is positive.
To solve the molar heat we need to find the moles of KNO3 dissolved and the change in heat as follows:
<em>Moles KNO3 -Molar mass: 101.1032g/mol-</em>
10.6g * (1mol/101.1032g) = 0.1048 moles KNO3
<em>Change in heat:</em>
q = m*S*ΔT
<em>Where q is heat in J,</em>
<em>m is the mass of the solution: 10.6g + 251.0g = 261.6g</em>
S is specififc heat of solution: 4.184J/g°C -Assuming is the same than pure water-
And ΔT is change in temperature: 25°C - 21.5°C = 3.5°C
q = 261.6g*4.184J/g°C*3.5°C
q = 3830.87J
<em>Molar heat of solution:</em>
3830.87J/0.1048 moles KNO3 =
36554J/mol =
<h3>36.55kJ/mol</h3>
<em />