Answer:
A
Explanation:
They will collect samples from different sites and write their observations
Not sure how they're connected to atmosphere other than polluting it with hot ash, but im fairly certain it creates land masses which separate oceans and form land underwater with certain underwater volcanoes
<span>C2Br2
First, we need to determine how many moles of the gas we have. For that, we'll use the Ideal Gas Law which is
PV = nRT
where
P = pressure (1.10 atm = 111458 Pa)
V = volume (10.0 ml = 0.0000100 m^3)
n = number of moles
R = Ideal gas constant (8.3144598 (m^3 Pa)/(K mol) )
T = Absolute temperature
Solving for n, we get
PV/(RT) = n
Now substituting our known values into the formula.
(111458 Pa * 0.0000100 m^3) / (288.5 K * 8.3144598 (m^3 Pa)/(K mol))
= (1.11458/2398.721652) mol
= 0.000464656 mol
Now let's calculate the empirical formula for this compound.
Atomic weight carbon = 12.0107
Atomic weight bromine = 79.904
Relative moles carbon = 13.068 / 12.0107 = 1.08802984
Relative moles bromine = 86.932 / 79.904 = 1.087955547
So the relative number of atoms of the two elements is
1.08802984 : 1.087955547
After dividing all numbers by the smallest, the ratio becomes
1.000068287 : 1
Which is close enough to 1:1 for me to consider the empirical formula to be CBr
Now calculate the molar mass of CBr
12.0107 + 79.904 = 91.9147
Finally, let's determine if the compound is actually CBr, or something like C2Br2, or some other multiple. Using the molar mass of CBr, multiply by the number of moles and see if the result matches the mass of the gas. So
91.9147 g/mol * 0.000464656 mol = 0.042708701 g
0.0427087 g is a lot smaller than 0.08541 g. So the compound isn't exactly CBr. Let's divide them to see what the factor is.
0.08541 / 0.0427087 = 1.99982673
1.99982673 is close enough to 2 to within the number of significant digits we have for me to claim that the formula for the unknown gas isn't CBr, but instead is C2Br2.</span>
Answer:
The change in internal energy is - 1.19 kJ
Explanation:
<u>Step 1:</u> Data given
Heat released = 3.5 kJ
Volume calorimeter = 0.200 L
Heat release results in a 7.32 °C
Temperature rise for the next experiment = 2.49 °C
<u>Step 2:</u> Calculate Ccalorimeter
Qcal = ccal * ΔT ⇒ 3.50 kJ = Ccal *7.32 °C
Ccal = 3.50 kJ /7.32 °C = 0.478 kJ/°C
<u>Step 3:</u> Calculate energy released
Qcal = 0.478 kJ/°C *2.49 °C = 1.19 kJ
<u>Step 4:</u> Calculate change in internal energy
ΔU = Q + W W = 0 (no expansion)
Qreac = -Qcal = - 1.19 kJ
ΔU = - 1.19 kJ
The change in internal energy is - 1.19 kJ
You would be most likely to use a slicing machine if you were using the <u>icebox </u>method to produce cookies.
In the icebox method a type of cookie in which the dough is made, rolled into a stick, and refrigerated until the dough hardens. The dough can be removed from the refrigerator, cut into individual pieces, and then baked. The rest of the dough is returned to the refrigerator until needed.
Icebox method, also known as refrigerator cookies, are sliced and baked cookies. The dough is formed into logs, chilled in the refrigerator (also called an icebox), sliced , and then baked.
Learn more about the Icebox method here,
https://brainly.in/question/1513677
#SPJ4