1) Chemical equation
Na2 SiO3 (s) + 8 HF (aq) ---> H2 Si F6 (aq) + 2 Na F (aq) + 3H2O (l)
It is balanced
2) Molar ratios
1 mol Na2 SiO3 : 8 mol HF.
3) Proportion
0.340 mol Na2 SiO3 * 8 mol HF / 1mol Na2SiO3 = 2.72 mol HF.
Answer: 2.72 mol HF
Answer:
So first thing to do in these types of problems is write out your chemical reaction and balance it:
Mg + O2 --> MgO
Then you need to start thinking about moles of Magnesium for moles of Magnesium Oxide. Based on the above equation 1 mole of Magnesium is needed to make one mole of Magnesium Oxide.
To get moles of magnesium you need to take the grams you started with (.418) and convert to moles by dividing by molecular weight of Mg (24.305), this gives you .0172 moles of Mg.
The theoretical yield would be the assumption that 100% of the magnesium will be converted into Magnesium Oxide, so you would get, based on the first equation, .0172 mol of MgO. Multiplying this by the molecular weight of MgO (24.305+16) gives us .693 g of MgO.
The percent yield is what you actually got in the experiment, and for this you subtract off the total mass from the crucible mass, or 27.374 - 26.687, which gives .66 g of MgO obtained.
Percent yield is acutal/theoretical, .66/.693, or 95.24%.
I'll let you do the same for the second trial, and average percent yield is just an average of the two trials percent yield.
Hope this helps.
Answer:
element
Explanation:
we know that helium is a pure substance although helium atoms are sometimes mixed with their isotopes it is still the same element. since there is no other element combined with helium this makes it an element.
<span>What is the atomic number of the first element to start filling an "f" sub-level?
the answer is 58.
I hope this helps :)</span>
Answer:
V₂ = 27 L
Explanation:
Given data:
Initial volume = 15 L
Initial temperature = 125 K
Final temperature = 225 K
Final volume = ?
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 15 L × 225K / 125 k
V₂ = 3375 L.K / 125 K
V₂ = 27 L