Answer:
Option 4. There's no hydrogen bonding between HBr molecules at all.
Explanation:
<h3>SiH₄</h3>
SiH₄ molecules are tetrahedral and symmetric. Dipoles due to the polar Si-H bonds balance each other. SiH₄ molecules are nonpolar. Only instantaneous dipoles are possible between those molecules.
<h3>C₆H₆ Benzene</h3>
Similar to SiH₄, benzene is symmetric. Dipoles due to the weakly polar C-H bonds balance each other. Benzene molecules are nonpolar. Only instantaneous dipoles are possible between those molecules.
<h3>NH₃</h3>
There are two conditions for hydrogen bonding to take place:
- H atoms are directly bonded to a highly electronegative element: Nitrogen, Oxygen, or Fluorine.
- There is at least one lone pair of electrons nearby.
Consider the Lewis structure of NH₃. There are three H atoms in each NH₃ molecule. Each of the three H atoms is bonded directly to the N atom with a highly polar N-H bond. Also, there is a lone pair of electrons on the N atom. Hydrogen bonding will take place between NH₃ molecules.
NH₃ is a relatively small molecule. As a result, hydrogen bonding will be the dominant type of intermolecular force between NH₃ molecules.
<h3>HBr</h3>
There are three lone pairs on the Br atom in each HBr molecule. However, no H atom is connected to any one of the three highly electronegative elements: N, O, or F. The Br atom isn't electronegative enough for the H atom to form hydrogen bonding. HBr molecules are polar. As a result, the dominant type of intermolecular forces between HBr molecules will be dipole-dipole interactions (A.k.a. permanent dipole.)
<h3>CaO</h3>
Calcium is a group 2 metal. Oxygen is one of the three most electronegative nonmetal. (Again, the most electronegative elements are: Nitrogen, Oxygen, and Fluorine.) As a main group metal, Ca atoms tend to lose electrons and form positive ions. Oxygen will gain those electrons to form a negative ion. As a result, CaO will be an ionic compound full of Ca²⁺ and O²⁻ ions. Forces between ions with opposite charges are called ionic bonds.
Answer:
Van't Hoff factor for AlCl₃ = 3 (Approx)
Explanation:
Given:
Number of observed particular = 1.79 M
Number of theoretical particular = 0.56 M
Find:
Van't Hoff factor for AlCl₃
Computation:
Van't Hoff factor for AlCl₃ = Number of observed particular / Number of theoretical particular
Van't Hoff factor for AlCl₃ = 1.79 M / 0.56 M
Van't Hoff factor for AlCl₃ = 3.19
Van't Hoff factor for AlCl₃ = 3 (Approx)
Answer:
The 5 chemical changes are. 1) Tarnish, 2) Rust, 3) Dissolve, 4) Burn, 5) Bake.
Answer : The types of radiation known to be emitted by radioactive elements are, alpha particles, beta particles, or gamma rays.
Explanation :
Radioactive decay : It the process in which an unstable atomic nucleus loses energy by emitting the radiations like, alpha particles, beta particles, or gamma rays.
The naturally occurring radioactive elements are, radium, thorium, and uranium.
Alpha particle : It is also known as alpha radiation or alpha ray that consists of 2 protons and 2 neutrons that are bound together into a particle that is identical to the helium nucleus. It is produced in the process of alpha decay.
Beta particle : It is also known as beta radiation or beta ray. During the beta decay process, a high energy and speed electron or positron are emitted by the radioactive decay of atomic nucleus.
Gamma particle : It is also a gamma radiation or gamma ray that is arising from the radioactive decay of atomic nuclei. It has shortest wavelength waves and imparts high photon energy can pass through most forms of matters because they have no mass.
The average kinetic energy and thermal energy decreases, and the temperature decreases as well.