THe Answer is 105 J
hope this helps and please brainliest, I was first :)
I am pretty sure that <span>If I were asked to compare matter in solid, liquid, and gaseous states, the statement which would best defined a gas is </span>highest energy, highest molecular motion, and least dense packaging of molecules. I choose this one because it's not sensible to <span>heat CO2 (in case of safety) and in the last option the amount of energy is not satisfying.
Hope it helps!</span>
Answer:
C . 24 L
Explanation:
Given data:
Initial volume of gas = 20.0 L
Initial pressure of gas = 660 mmHg
Final volume = ?
Final pressure = 550 mmHg
Solution:
The given problem will be solved through the Boly's law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
660 mmHg × 20.0 L = 550 mmHg × V₂
V₂ = 13200 mmHg. L/ 550 mmHg
V₂ = 24 L
Answer:
A) The shared electrons in C-O bonds spend less time close to the carbon nucleus than the shared electrons in C-H bonds.
Explanation:
The electronegativity from H is 2.2, from C is 2.55 and from O is 3.44. This property is the measure of the attractive force between an atom and a pair of electrons.
So, the difference of electronegativity of H and C is smaller than the difference between O and C. Because oxygen is more electronegative, the electrons stay close to it in the bond C=O. So carbon has a partial positive charge in that bond. For the bond C-H, the shared electrons stay closes to carbon.