The answer above is correct (I took a test on this)
<span>Oxidation is the loss of electrons and corresponds to an increase in oxidation state. The reduction is the gain of electrons and corresponds to a decrease in oxidation state. Balancing redox reactions can be more complicated than balancing other types of reactions because both the mass and charge must be balanced. Redox reactions occurring in aqueous solutions can be balanced by using a special procedure called the half-reaction method of balancing. In this procedure, the overall equation is broken down into two half-reactions: one for oxidation and the other for reduction. The half-reactions are balanced individually and then added together so that the number of electrons generated in the oxidation half-reaction is the same as the number of electrons consumed in the reduction half-reaction.</span>
Answer:
See explanation
Explanation:
Many organic compounds have low melting points. This is due to the fact that many of these compounds are non polar.
However, compound X is slightly polar but still has a melting point which is far less than that of sand composed of a high melting point inorganic material.
Since sand has a much higher melting point compared to compound X, the researcher need not be worried that sand was spilled into his beaker.
Answer: try to understand coz the question is not valid
Explanation: Explain the relationship between forward and reverse reactions at equilibrium and predict how changing the amount of a reactant or product (creating a stress) will affect that relationship.For example (select one from each underlined section)If the amount of (reactant or product) increases, the rate of the (forward or reverse)reaction will (increase or decrease)to reach a new equilibrium. If the amount of (reactant or product) decreases, the rate of the (forward or reverse)reaction will (increase or decrease)to reach a new equilibrium. Procedure: Access the virtual lab and complete the inquiry experiment
Answer:
I guess 4 weeks is a little late.
Explanation: