Answer:
A
Explanation:
The greatest concentration of atomic mass is in the nucleus because it is made up of protons and neutrons. The electrons surrounding the nucleus don't have as much mass as protons or neutrons.
Hopefully this helps...
Answer:Newton's three laws of motion relate to each other in that they lay a foundation for the principles of things in motion, then build upon that foundation. For example, the first law of motion,...
Explanation: WEEEEEEEEEEEEEEEEEEEEWOOOOOOOOOOOOOOOOWWWWWWWWWWWWWWWWWWWWWWOOOOOOOOOOOOOOOOOWWWWWWWWWWWWWWWWOOOOOOOOOOOOOOWWWWWWWWWWWWWWWWWWWWWWWWWWWWO-EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
Answer:
E/4
Explanation:
The formula for electric field of a very large (essentially infinitely large) plane of charge is given by:
E = σ/(2ε₀)
Where;
E is the electric field
σ is the surface charge density
ε₀ is the electric constant.
Formula to calculate σ is;
σ = Q/A
Where;
Q is the total charge of the sheet
A is the sheet's area.
We are told the elastic sheet is a square with a side length as d, thus ;
A = d²
So;
σ = Q/d²
Putting Q/d² for σ in the electric field equation to obtain;
E = Q/(2ε₀d²)
Now, we can see that E is inversely proportional to the square of d i.e.
E ∝ 1/d²
The electric field at P has some magnitude E. We now double the side length of the sheet to 2L while keeping the same amount of charge Q distributed over the sheet.
From the relationship of E with d, the magnitude of electric field at P will now have a quarter of its original magnitude which is;
E_new = E/4
Answer:
The interactions of electricity and magnetism are difficult to explain in nontechnical terms. This is primarily because one has to describe the interactions in terms of invisible "force fields" which shift, expand, contract, strengthen, weaken, and rotate in space, and these are very difficult to describe adequately in verbal terms. In mathematical terms, coupled sets of three-dimensional vector differential equations are required, and these are also quite difficult to visualize.
Explanation: