Distance is 50 km
Displacement is 10 km
<u>Explanation:</u>
Given:
Distance toward south, x = 25 km
Distance towards west, y = 10 km
Distance towards north, z = 15 km
(a) Total distance, D = ?
Total distance, D = x + y + z
D = 25 + 10 + 15
D = 50km
(b) Displacement, d = ?
Displacement = final position - initial position
= 10 - 0 km
= 10km
Answer:
which of the cars are speeding up: c
which of the cars or slowing down: a
which of the cars are maintaning a constant speed: b
Explanation:
Moment is mass times speed
INITIAL moment before collision was 20 000 times 25 = 500 000
Answer: because of air resistance. See explanation for further details.
Explanation: Galileo performed an experiment to proof that the time of descent of two different masses is independent of time.
But in reality this is most likely not true because of air resistance and other fluid frictional effects in consideration.
If the experiment is performed in a vacuum, it will always be true that time is independent of masses of two falling objects.
Answer:
Explanation:
With the help of expression of time period of pendulum we can calculate the height of the branch . The swinging tire can be considered equivalent to swinging bob of a pendulum . Here length of pendulum will be equal to height of branch .
Let it be h . Let the time period of swing of tire be T then from the formula of time period of pendulum
where l is length of pendulum .
here l = h so

If we calculate the time period of swing of tire , we can calculate the height of branch .
The time period of swing of tire can be estimated with the help of a stop watch . Time period is time that the tire will take in going from one extreme point to the other end and then coming back . We can easily estimate it with the help of stop watch .