Answer:
Vo = 4.5 [m/s]
Explanation:
In order to solve this problem, we must use the following equation of kinematics.

where:
Vf = final velocity = 12 [m/s]
Vo = initial velocity [m/s]
a = acceleration = 1.5 [m/s²]
t = time = 5 [s]
Now replacing:
![12=v_{o}+1.5*5\\v_{o}=12- (7.5)\\v_{o}= 4.5[m/s]](https://tex.z-dn.net/?f=12%3Dv_%7Bo%7D%2B1.5%2A5%5C%5Cv_%7Bo%7D%3D12-%20%287.5%29%5C%5Cv_%7Bo%7D%3D%204.5%5Bm%2Fs%5D)
Answer:
a) 
b) 
Explanation:
given,
n =1.5 for glass surface
n = 1 for air
incidence angle = 45°
using Fresnel equation of reflectivity of S and P polarized light

using snell's law to calculate θ t


a) 

b) 

Answer:
The colour of visible light depends on its wavelength. These wavelengths range from 700 nm at the red end of the spectrum to 400 nm at the violet end. Visible light waves are the only electromagnetic waves we can
Explanation:
Answer:

Explanation:
We have,
Speed of an electron is 
It is required to find the De Broglie wavelength of electron. The formula for the De- Broglie wavelength is given by :

h is Planck's constant
m is mass of an electron
Plugging all the values we get :

So, the De-Broglie wavelength of an electron is 
Energy released during an earthquake travels in the form of waves<span> around the Earth. Two types of seismic </span>wave<span> exist, </span>P<span>- and </span>S-waves<span>. They are different in the way that they travel through the Earth. ... They are transverse </span>waves<span> which mean the </span>vibrations<span> are at right angles to the direction of travel.</span>